Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(6): 284, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526196

RESUMEN

BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Inestabilidad de Microsatélites , Intercambiador de Sodio-Calcio , Animales , Calcio/metabolismo , Señalización del Calcio , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Curcumina/farmacología , Humanos , Ratones , Repeticiones de Microsatélite , Proteínas Mitocondriales/metabolismo , Intercambiador de Sodio-Calcio/antagonistas & inhibidores
2.
Ann Surg Oncol ; 26(13): 4445-4451, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31399820

RESUMEN

BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new technology for delivering intraperitoneal chemotherapy. It is generally assumed that with PIPAC, the ratio of peritoneal to systemic drug concentration is superior to liquid hyperthermic intraperitoneal chemotherapy (HIPEC). To date, no direct comparative data are available supporting such an assumption. MATERIALS AND METHODS: Twelve 65-day-old pigs were randomly separated into three groups of four pigs each, all of which received intraperitoneal chemotherapy using the following administration methods: PIPAC with oxaliplatin 92 mg in 150 ml dextrose 5% (Group 1); PIPAC with electrostatic aerosol precipitation (ePIPAC; Group 2); or laparoscopic HIPEC (L-HIPEC) with oxaliplatin 400 mg in 4 L dextrose 5% at 42 °C (Group 3). Serial blood and peritoneal tissue concentrations of oxaliplatin were determined by spectrometry. RESULTS: In all three groups, the maximum concentration of oxaliplatin in blood was detected 50-60 min after onset of the chemotherapy experiments, with no significant differences among the three groups (p = 0.7994). Blood oxaliplatin concentrations (0-30 min) were significantly higher in the L-HIPEC group compared with the ePIPAC group (p < 0.05). No difference was found for the overall systemic oxaliplatin absorption (area under the curve). Overall concentrations in the peritoneum were not different among the three groups (p = 0.4725), but were significantly higher in the visceral peritoneum in the PIPAC group (p = 0.0242). CONCLUSIONS: Blood and tissue concentrations were comparable between all groups; however, depending on the intraperitoneal area examined and the time points of drug delivery, the concentrations differed significantly between the three groups.


Asunto(s)
Hipertermia Inducida , Oxaliplatino/administración & dosificación , Oxaliplatino/farmacocinética , Aerosoles/administración & dosificación , Aerosoles/farmacocinética , Animales , Laparoscopía , Peritoneo/metabolismo , Porcinos , Distribución Tisular
3.
Chem Sci ; 14(18): 4697-4703, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181780

RESUMEN

The discovery of tumour-associated markers is of major interest for the development of selective cancer chemotherapy. Within this framework, we introduced the concept of induced-volatolomics enabling to monitor simultaneously the dysregulation of several tumour-associated enzymes in living mice or biopsies. This approach relies on the use of a cocktail of volatile organic compound (VOC)-based probes that are activated enzymatically for releasing the corresponding VOCs. Exogenous VOCs can then be detected in the breath of mice or in the headspace above solid biopsies as specific tracers of enzyme activities. Our induced-volatolomics modality highlighted that the up-regulation of N-acetylglucosaminidase was a hallmark of several solid tumours. Having identified this glycosidase as a potential target for cancer therapy, we designed an enzyme-responsive albumin-binding prodrug of the potent monomethyl auristatin E programmed for the selective release of the drug in the tumour microenvironment. This tumour activated therapy produced a remarkable therapeutic efficacy on orthotopic triple-negative mammary xenografts in mice, leading to the disappearance of tumours in 66% of treated animals. Thus, this study shows the potential of induced-volatolomics for the exploration of biological processes as well as the discovery of novel therapeutic strategies.

4.
Angew Chem Int Ed Engl ; 51(46): 11606-10, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-22996951

RESUMEN

Massive attack: Galactoside prodrugs have been designed that can be selectively activated by lysosomal ß-galactosidase located inside cancer cells expressing a specific tumor-associated receptor. This efficient enzymatic process triggers a potent cytotoxic effect, releasing the potent antimitotic agent MMAE and allowing the destruction of both receptor-positive and surrounding receptor-negative tumor cells.


Asunto(s)
Aminobenzoatos/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Profármacos/uso terapéutico , beta-Galactosidasa/metabolismo , Aminobenzoatos/administración & dosificación , Aminobenzoatos/química , Aminobenzoatos/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Neoplasias/enzimología , Neoplasias/patología , Oligopéptidos/administración & dosificación , Oligopéptidos/química , Oligopéptidos/metabolismo , Profármacos/administración & dosificación , Profármacos/química , Profármacos/metabolismo
5.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559172

RESUMEN

Following our previous study on the development of EGFR-targeted nanomedicine (NM-scFv) for the active delivery of siRNA in EGFR-positive cancers, this study focuses on the development and the quality control of a radiolabeling method to track it in in vivo conditions with nuclear imaging. Our NM-scFv is based on the electrostatic complexation of targeted nanovector (NV-scFv), siRNA and two cationic polymers. NV-scFv comprises an inorganic core, a fluorescent dye, a polymer layer and anti-EGFR ligands. To track NM-scFv in vivo with nuclear imaging, the DTPA chemistry was used to radiolabel NM-scFv with 111In. DTPA was thiolated and introduced onto NV-scFv via the maleimide chemistry. To obtain suitable radiolabeling efficiency, different DTPA/NV-scFv ratios were tested, including 0.03, 0.3 and 0.6. At the optimized ratio (where the DTPA/NV-scFv ratio was 0.3), a high radiolabeling yield was achieved (98%) and neither DTPA-derivatization nor indium-radiolabeling showed any impact on NM-scFv's physicochemical characteristics (DH ~100 nm, PDi < 0.24). The selected NM-scFv-DTPA demonstrated good siRNA protection capacity and comparable in vitro transfection efficiency into EGFR-overexpressing cells in comparison to that of non-derivatized NM-scFv (around 67%). Eventually, it was able to track both qualitatively and quantitatively NM-scFv in in vivo environments with nuclear imaging. Both the radiolabeling and the NM-scFv showed a high in vivo stability level. Altogether, a radiolabeling method using DTPA chemistry was developed with success in this study to track our NM-scFv in in vivo conditions without any impact on its active targeting and physicochemical properties, highlighting the potential of our NM-scFv for future theranostic applications in EGFR-overexpressing cancers.

6.
Oncogene ; 41(21): 2920-2931, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411034

RESUMEN

Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.


Asunto(s)
Neoplasias de la Mama , Receptores Purinérgicos P2X4 , Autofagia/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
7.
Mol Imaging ; 10(6): 446-52, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22201535

RESUMEN

To improve spatial resolution in in vivo bioluminescence imaging, a photon scattering correction, image restoration method was tested. The chosen algorithm was tested on in vivo bioluminescent images acquired on three representative tumor models: subcutaneous, pulmonary, and disseminated peritoneal. Tumor size was chosen as a quantitative criterion, such that the tumor reference measurements (determined photographically or by computed tomography) were compared to those derived from bioluminescent images, before and after restoration. This technique allowed a significant reduction to be achieved in the relative error between reference measurements and dimensions derived from bioluminescent images. In addition, improved delineation of the tumor foci was achieved. The restoration method allows spatial resolution in bioluminescence imaging to be improved, with interesting perspectives in terms of staging and quantitation in experimental oncology.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Mediciones Luminiscentes/métodos , Imagen Molecular/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/química , Reproducibilidad de los Resultados
8.
Blood ; 113(16): 3765-72, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19029438

RESUMEN

Clinical studies have shown a large interindividual variability in rituximab exposure and its significant influence on clinical response in patients receiving similar doses of antibody. The aim of this study was to evaluate the influence of tumor burden on dose-concentration-response relationships of rituximab. Murine lymphoma cells (EL4, 8 x 10(3)), transduced with human CD20 cDNA and transfected with luciferase plasmid (EL4-huCD20-Luc), were intravenously injected into C57BL/6J mice. Tumor burden detection, dissemination, and progression were evaluated quantitatively by in vivo bioluminescence imaging. Different doses of rituximab (6, 12, 20, or 40 mg/kg) were infused 13 days after lymphoma cell inoculation, and rituximab serum concentrations were measured by enzyme-linked immunosorbent assay. Without rituximab, all mice developed disseminated lymphoma and died within 30 days, whereas a significant dose-response relationship was observed in mice receiving rituximab. The 20-mg/kg dose was adequate to study interindividual variability in response because 23% of mice were cured, 59% had partial response, and 18% had disease progression. Rituximab concentrations were inversely correlated with tumor burden; mice with low tumor burden had high rituximab concentrations. Furthermore, rituximab exposure influenced response and survival. Finally, using a pharmacokinetic-pharmacodynamic model, we demonstrated that tumor burden significantly influenced rituximab efficacy.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígenos CD20 , Antineoplásicos/farmacocinética , Linfoma/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Carga Tumoral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Luciferasas/metabolismo , Mediciones Luminiscentes , Linfoma/genética , Linfoma/metabolismo , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Rituximab , Trasplante Isogénico
9.
Invest New Drugs ; 29(1): 9-21, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19777159

RESUMEN

We have exploited the polyamine transport system (PTS) to deliver selectively a spermine-drug conjugate, F14512 to cancer cells. This study was aimed to define F14512 anticancer efficacy against tumor models and to investigate whether fluorophor-labeled polyamine probes could be used to identify tumors expressing a highly active PTS and that might be sensitive to F14512 treatments. Eighteen tumor models were used to assess F14512 antitumor activity. Cellular uptake of spermine-based fluorescent probes was measured by flow cytometry in cells sampled from tumor xenografts by needle biopsy. The accumulation of the fluorescent probe within B16 tumors in vivo was assessed using infrared fluorescence imaging. This study has provided evidence of a major antitumor activity for F14512. Significant responses were obtained in 67% of the tumor models evaluated, with a high level of activity recorded in 33% of the responsive models. Complete tumor regressions were observed after i.v., i.p. or oral administrations of F14512 and its antitumor activity was demonstrated over a range of 2-5 dose levels, providing evidence of its good tolerance. The level of cellular fluorescence emitted by the fluorescent probes was higher in cells sampled from tumors sensitive to F14512 treatments than from F14512-refractory tumors. We suggest that these probes could be used to identify tumors expressing a highly active PTS and guide the selection of patients that might be treated with F14512. These results emphasize the preclinical interest of this novel molecule and support its further clinical development.


Asunto(s)
Antineoplásicos/farmacología , Podofilotoxina/análogos & derivados , Poliaminas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Transporte Biológico/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citometría de Flujo , Fluorescencia , Humanos , Inmunohistoquímica , Ratones , Podofilotoxina/química , Podofilotoxina/farmacología , Espermina/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 38(10): 1832-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21660624

RESUMEN

PURPOSE: F14512 exploiting the polyamine transport system (PTS) for tumour cell delivery has been described as a potent antitumour agent. The optimal use of this compound will require a probe to identify tumour cells expressing a highly active PTS that might be more sensitive to the treatment. The aim of this study was to design and characterize a scintigraphic probe to evaluate its uptake in cancer cells expressing the PTS. METHODS: Three polyamines coupled to a hydrazinonicotinamide (HYNIC) moiety were synthesized and labelled with 99mTc. Their radiochemical purity was determined by HPLC. The plasma stability of the 99mTc-HYNIC-spermine probe and its capacity to accumulate into PTS-active cells were also evaluated. In vitro internalization was tested using murine melanoma B16/F10 cells and human lung carcinoma A549 cells. Biodistribution was determined in healthy mice and tumour uptake was studied in B16/F10 tumour-bearing mice. A HL-60-Luc human leukaemia model was used to confront single photon emission computed tomography (SPECT) images obtained with the 99mTc-labelled probe with those obtained by bioluminescence. RESULTS: The 99mTc-HYNIC-spermine probe was selected for its capacity to accumulate into PTS-active cells and its stability in plasma. In vitro studies demonstrated that the probe was internalized in the cells via the PTS. In vivo measurements indicated a tumour to muscle scintigraphic ratio of 7.9±2.8. The combined bioluminescence and scintigraphic analyses with the leukaemia model demonstrated that the spermine conjugate accumulates into the tumour cells. CONCLUSION: The 99mTc-HYNIC-spermine scintigraphic probe is potentially useful to characterize the PTS activity of tumours. Additional work is needed to determine if this novel conjugate may be useful to analyse the PTS status of patients with solid tumours.


Asunto(s)
Proteínas Portadoras/metabolismo , Hidrazinas , Imagen Molecular/métodos , Neoplasias/patología , Niacinamida/análogos & derivados , Compuestos de Organotecnecio , Espermina/análogos & derivados , Animales , Transporte Biológico , Línea Celular Tumoral , Estabilidad de Medicamentos , Femenino , Humanos , Hidrazinas/química , Hidrazinas/metabolismo , Hidrazinas/farmacocinética , Mediciones Luminiscentes , Masculino , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacocinética , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/metabolismo , Compuestos de Organotecnecio/farmacocinética , Radioquímica , Espermina/química , Espermina/metabolismo , Espermina/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único
11.
Pharm Res ; 28(9): 2147-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21491145

RESUMEN

PURPOSE: Lung cancer is the leading cause of cancer-related death worldwide. The efficacy of current systemic treatments is limited, with major side effects and only modest survival improvements. Aerosols routinely used to deliver drugs into the lung for treating infectious and inflammatory lung diseases have never been used to deliver monoclonal antibodies to treat lung cancer. We have shown that cetuximab, a chimeric anticancer anti-EGFR mAb, is suitable for airway delivery as it resists the physical constraints of aerosolization, and have evaluated the aerosol delivery of cetuximab in vivo. METHODS: We developed an animal model of lung tumor sensitive to cetuximab by injecting Balb/c Nude mice intratracheally with A431 cells plus 10 mM EDTA and analyzed the distribution, pharmacokinetics and antitumor efficacy of cetuximab aerosolized into the respiratory tract. RESULTS: Aerosolized IgG accumulated durably in the lungs and the tumor, but passed poorly and slowly into the systemic circulation. Aerosolized cetuximab also limited the growth of the mouse tumor. Thus, administering anticancer mAbs via the airways is effective and may limit systemic side effects. CONCLUSION: Delivery of aerosolized-mAbs via the airways deserves further evaluation for treating lung cancers.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Administración por Inhalación , Aerosoles , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Western Blotting , Línea Celular Tumoral , Cetuximab , Estabilidad de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Femenino , Inyecciones Intravenosas , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Proc Natl Acad Sci U S A ; 105(6): 2046-51, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18270165

RESUMEN

Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.


Asunto(s)
Aerosoles , Vectores Genéticos , Vacunas/administración & dosificación , Animales , Macaca mulatta , Distribución Tisular , Vacunas/efectos adversos , Vacunas/genética , Vacunas/inmunología , Vacunas/farmacocinética
13.
Sci Rep ; 11(1): 21843, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750488

RESUMEN

Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is a promising approach with a high optimization potential for the treatment of peritoneal carcinomatosis. To study the efficacy of PIPAC and drugs, first rodent cancer models were developed. But inefficient drug aerosol supply and knowledge gaps concerning spatial drug distribution can limit the results based on such models. To study drug aerosol supply/deposition, computed tomography scans of a rat capnoperitoneum were used to deduce a virtual and a physical phantom of the rat capnoperitoneum (RCP). RCP qualification was performed for a specific PIPAC method, where the capnoperitoneum is continuously purged by the drug aerosol. In this context, also in-silico analyses by computational fluid dynamic modelling were conducted on the virtual RCP. The physical RCP was used for ex-vivo granulometric analyses concerning drug deposition. Results of RCP qualification show that aerosol deposition in a continuous purged rat capnoperitoneum depends strongly on the position of the inlet and outlet port. Moreover, it could be shown that the droplet size and charge condition of the drug aerosol define the deposition efficiency. In summary, the developed virtual and physical RCP enables detailed in-silico and ex-vivo analyses on drug supply/deposition in rodents.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico , Peritoneo/diagnóstico por imagen , Aerosoles , Animales , Antineoplásicos/farmacocinética , Simulación por Computador , Diseño Asistido por Computadora , Humanos , Hidrodinámica , Inyecciones Intraperitoneales/instrumentación , Inyecciones Intraperitoneales/métodos , Modelos Animales , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/metabolismo , Peritoneo/metabolismo , Fantasmas de Imagen , Presión , Ratas , Tomografía Computarizada por Rayos X , Interfaz Usuario-Computador
14.
J Liposome Res ; 20(1): 62-72, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19640257

RESUMEN

S12363 is a potent therapeutic agent with a strong in vitro activity against a variety of tumor types but also a high in vivo toxicity. Loading of this drug into long-circulating liposomes is expected to enhance its therapeutic index. Pharmacokinetics of liposomal S12363 showed that circulating S12363 was entrapped into liposomes until 24 hours after intravenous injection in mice. The liposomal formulation significantly increased the plasma concentration, half-life, and AUC and decreased the plasma clearance rates and volume of distribution of S12363. Liposome extravasation was evaluated with two tumor models by both microscopic analysis and liposome radiolabeling. Liposome accumulation was much more important in the case of B16 melanoma, compared to H460 tumor, with both inoculated subcutaneously and with comparable size. H460 tumor was also inoculated into the lung. The tumor localization did not influence liposome accumulation into the tissue. The liposomal formulation injected into mice bearing B16 melanoma allowed a 10-fold accumulation of S12363 into the tumor interstitium, as compared to the solution. Bioluminescence data, supported by the survival curves of the animals, showed that S12363-liposomes were able to significantly restrict B16 melanoma progression and increase mice survival.


Asunto(s)
Liposomas/farmacocinética , Animales , Área Bajo la Curva , Química Farmacéutica , Femenino , Semivida , Masculino , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Clorhidrato de Raloxifeno , Distribución Tisular , Alcaloides de la Vinca
15.
Front Bioeng Biotechnol ; 8: 589782, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282850

RESUMEN

Aerosol sizing is generally measured at ambient air but human airways have different temperature (37°C) and relative humidity (100%) which can affect particle size in airways and consequently deposition prediction. This work aimed to develop and evaluate a new method using cascade impactor to measure particle size at human physiological temperature and humidity (HPTH) taking into account ambient air conditions. A heated and humidified trachea was built and a cascade impactor was heated to 37°C and humidified inside. Four medical aerosols [jet nebulizer, mesh nebulizer, Presurized Metered Dose Inhaler (pMDI), and Dry Powder Inhaler (DPI)] under ambient conditions and at HPTH were tested. MMAD was lower at HPTH for the two nebulizers; it was similar at ambient conditions and HPTH for pMDI, and the mass of particles smaller than 5 µm decreased for DPI at HPTH (51.9 vs. 82.8 µg/puff). In conclusion, we developed a new method to measure particle size at HPTH affecting deposition prediction with relevance. In vivo studies are required to evaluate the interest of this new model to improve the precision of deposition prediction.

16.
Sci Rep ; 10(1): 2661, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060400

RESUMEN

Increasingly, in vivo imaging holds a strategic position in bio-pharmaceutical innovation. We will present the implementation of an integrated multimodal imaging setup enabling the assessment of multiple, complementary parameters. The system allows the fusion of information provided by: Near infrared fluorescent biomarkers, bioluminescence (for tumor proliferation status), Photoacoustic and Ultrasound imaging. We will study representative applications to the development of a smart prodrug, delivering a highly cytotoxic chemotherapeutic agent to cancer tumors. The results realized the ability of this embedded, multimodality imaging platform to firstly detect bioluminescent and fluorescent signals, and secondly, record ultrasound and photoacoustic data from the same animal. This study demonstrated that the prodrug was effective in three different models of hypoxia in human cancers compared to the parental cytotoxic agent and the vehicle groups. Monitoring by photoacoustic imaging during the treatments revealed that the prodrug exhibits an intrinsic capability to prevent the progression of tumor hypoxia. It is essential for onco-pharmacology studies to precisely document the hypoxic status of tumors both before and during the time course of treatments. This approach opens new perspectives for exploitation of preclinical mouse models of cancer, especially when considering associations between hypoxia, neoangiogenesis and antitumor activity.


Asunto(s)
Antineoplásicos/farmacología , Imagen Multimodal , Profármacos/farmacología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico , Hipoxia Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Control Release ; 327: 19-25, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777236

RESUMEN

The development of selective anticancer drugs avoiding side effects met in the course of almost all current treatments is of major interest for cancer patients. Here, we report on a novel ß-glucuronidase-responsive drug delivery system allowing the in vivo synthesis of triple-loaded albumin conjugate. Following intravenous administration, the glucuronide prodrug reacts in the blood stream with the cysteine-34 residue of circulating albumin through thio-Michael addition, enabling the bioconjugation of three Monomethylauristatin E (MMAE) molecules to the plasmatic protein. The albumin conjugate then accumulates in malignant tissues where tumor-associated ß-glucuronidase triggers the selective release of the whole transported drugs. By operating this way, the trimeric glucuronide prodrug produces remarkable anticancer activity on orthotopic MIA PaCa-2 pancreatic tumors, leading to dramatic reduction or even remission of tumors (3/8 mice).


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Albúminas , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico
18.
J Am Coll Surg ; 231(6): 704-712, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32891798

RESUMEN

BACKGROUND: In the COVID-19 crisis, laparoscopic surgery is in focus as a relevant source of bioaerosol release. The efficacy of electrostatic aerosol precipitation (EAP) and continuous aerosol evacuation (CAE) to eliminate bioaerosols during laparoscopic surgery was verified. STUDY DESIGN: Ex-vivo laparoscopic cholecystectomies (LCs) were simulated ± EAP or CAE in Pelvitrainer equipped with swine gallbladders. Release of bioaerosols was initiated by performing high-frequency electrosurgery with a monopolar electro hook (MP-HOOK) force at 40 watts (MP-HOOK40) and 60 watts (MP-HOOK60), as well as by ultrasonic cutting (USC). Particle number concentrations (PNC) of arising aerosols were analyzed with a condensation particle counter (CPC). Aerosol samples were taken within the Pelvitrainer close to the source, outside the Pelvitrainer at the working trocar, and in the breathing zone of the surgeon. RESULTS: Within the Pelvitrainer, MP-HOOK40 (6.4 × 105 cm-3) and MP-HOOK60 (7.3 × 105 cm-3) showed significantly higher median PNCs compared to USC (4.4 × 105 cm-3) (p = 0.001). EAP led to a significant decrease of the median PNCs in all 3 groups. A high linear correlation with Pearson correlation coefficients of 0.852, 0.825, and 0.759 were observed by comparing MP-HOOK40 (± EAP), MP-HOOK60 (± EAP), and USC (± EAP), respectively. During ex-vivo LC and CAE, significant bioaerosol contaminations of the operating room occurred. Ex-vivo LC with EAP led to a considerable reduction of the bioaerosol concentration. CONCLUSIONS: EAP was found to be efficient for intraoperative bioaerosol elimination and reducing the risk of bioaerosol exposure for surgical staff.


Asunto(s)
Aerosoles , Colecistectomía Laparoscópica/métodos , Electrocirugia/métodos , Control de Infecciones/métodos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Modelos Animales , Electricidad Estática , Aerosoles/análisis , Microbiología del Aire , Animales , COVID-19/prevención & control , COVID-19/transmisión , Colecistectomía Laparoscópica/instrumentación , Electrocirugia/instrumentación , Técnicas In Vitro , Control de Infecciones/instrumentación , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Proyectos Piloto , Porcinos
19.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825056

RESUMEN

The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.

20.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348855

RESUMEN

Intraperitoneal chemotherapy (IPC) is a locoregional treatment option in patients with peritoneal metastases (PM). Here, we present an ovarian cancer (OC)-derived PM mouse model for the study of different forms of IPC. Xenograft cell proliferation (luciferase-transfected OVCAR3 and SKOV3 clones) and growth kinetics were assessed using PET scan, bioluminescence imaging (BLI), and histological tumor analysis. Liquid IPC was achieved by intraperitoneal injection with/without capnoperitoneum (6-7 mmHg). Pressurized intraperitoneal aerosol chemotherapy (PIPAC) was mimicked using an intratracheal drug aerosol administration system (micro-nozzle), which, as demonstrated by ex vivo granulometric analysis using laser diffraction spectrometry, produced a polydisperse, bimodal aerosol with a volume-weighted median diameter of (26.49 ± 2.76) µm. Distribution of Tc-99m-labeled doxorubicin in mice was characterized using SPECT and was dependent on the delivery mode and most homogeneous when the micro-nozzle was used. A total of 2 mg doxorubicin per kg body weight was determined to be the optimally effective and tolerable dose to achieve at least 50% tumor reduction. Repeated PIPAC (four times at seven-day-intervals) with doxorubicin in SKOV3-luc tumor-bearing mice resulted in halted tumor proliferation and tumor load reduced after the second round of PIPAC versus controls and the number of tumor nodules was significantly reduced (27.7 ± 9.5 vs. 57.3 ± 9.5; p = 0.0003). Thus, we established the first mouse model of OC PM for the study of IPC using a human xenograft with SKOV3 cells and an experimental IPC setup with a miniaturized nozzle. Repeated IPC was feasible and demonstrated time-dependent anti-tumor activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA