RESUMEN
beta-galactosidase is a ubiquitous lysosomal hydrolase that specifically cleaves terminal beta-galactosyl residues from glycoproteins, glycosaminoglycans, oligosaccharides, and glycolipids. To study the intracellular distribution of this enzyme, we prepared a specific polyclonal antibody to lysosomal beta-galactosidase by immunizing rabbits with a highly purified preparation of beta-galactosidase from rat liver. Using this antibody we employed an immunocytochemical technique (protein A coupled to horseradish peroxidase and diaminobenzidine cytochemistry) and showed that beta-galactosidase is present in all hepatocytes of the rat liver. All types of lysosomes, the rough endoplasmic reticulum, and the specialized region of smooth endoplasmic reticulum known as GERL showed immunoreactivity. This in situ distribution suggests that these organelles are involved in the biosynthesis and intracellular sorting of this lysosomal enzyme.
Asunto(s)
Galactosidasas/análisis , Hígado/enzimología , Lisosomas/enzimología , beta-Galactosidasa/análisis , Animales , Retículo Endoplásmico/enzimología , Histocitoquímica , Técnicas para Inmunoenzimas , Hígado/ultraestructura , Microscopía Electrónica , Ratas , Ratas EndogámicasRESUMEN
UNLABELLED: We investigated, in isolated bile duct units (IBDU) and cholangiocytes isolated from normal rat liver, the occurrence of acetylcholine (ACh) receptors, and the role and mechanisms of ACh in the regulation of the Cl-/HCO3- exchanger activity. The Cl-/HCO3- exchanger activity was evaluated measuring changes in intracellular pH induced by acute Cl- removal/readmission. M3 subtype ACh receptors were detected in IBDU and isolated cholangiocytes by immunofluorescence, immunoelectron microscopy, and reverse transcriptase PCR. M1 subtype ACh receptor mRNA was not detected by reverse transcriptase PCR and M2 subtype was negative by immunofluorescence. ACh (10 microM) showed no effect on the basal activity of the Cl-/HCO3- exchanger. When IBDU were exposed to ACh plus secretin, ACh significantly (P < 0.03) increased the maximal rate of alkalinization after Cl- removal and the maximal rate of recovery after Cl- readmission compared with secretin alone (50 nM), indicating that ACh potentiates the stimulatory effect of secretin on the Cl-/HCO3- exchanger activity. This effect of ACh was blocked by the M3 ACh receptor antagonist, 4-diphenyl-acetoxy-N-(2-chloroethyl)-piperidine (40 nM), by the intracellular Ca2+ chelator, 1,2-bis (2-Aminophenoxy)- ethane-N,N,N', N'-tetraacetic acid acetoxymethylester (50 microM), but not by the protein kinase C antagonist, staurosporine (0.1 microM). Intracellular cAMP levels, in isolated rat cholangiocytes, were unaffected by ACh alone, but were markedly higher after exposure to secretin plus ACh compared with secretin alone (P < 0.01). The ACh-induced potentiation of the secretin effect on both intracellular cAMP levels and the Cl-/HCO3- exchanger activity was individually abolished by two calcineurin inhibitors, FK-506 and cyclosporin A (100 nM). CONCLUSIONS: M3 ACh receptors are markedly and diffusively represented in rat cholangiocytes. ACh did not influence the basal activity of the Cl-/HCO3- exchanger, but enhanced the stimulation by secretin of this anion exchanger by a Ca2+-dependent, protein kinase C-insensitive pathway that potentiates the secretin stimulation of adenylyl cyclase. Calcineurin most likely mediates the cross-talk between the calcium and adenylyl cyclase pathways. Since secretin targets cholangiocytes during parasympathetic predominance, coordinated regulation of Cl-/HCO3- exchanger by secretin (cAMP) and ACh (Ca2+) could play a major role in the regulation of ductal bicarbonate excretion in bile just when the bicarbonate requirement in the intestine is maximal.
Asunto(s)
Acetilcolina/fisiología , Antiportadores/metabolismo , Bicarbonatos/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Cloruros/metabolismo , Acetilcolina/farmacología , Animales , Conductos Biliares Intrahepáticos/citología , Conductos Biliares Intrahepáticos/efectos de los fármacos , Inhibidores de la Calcineurina , Quelantes/farmacología , Antiportadores de Cloruro-Bicarbonato , AMP Cíclico/metabolismo , Ciclosporina/farmacología , Ácidos Difenilacéticos/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Técnica del Anticuerpo Fluorescente Indirecta , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Microscopía Inmunoelectrónica , Antagonistas Muscarínicos/farmacología , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Colinérgicos/análisis , Secretina/farmacología , Estaurosporina/farmacología , Tacrolimus/farmacologíaRESUMEN
This manuscript summarizes recent data showing that estrogens and their receptors play an important role in modulating cholangiocyte proliferation. We have recently demonstrated that rat cholangiocytes express both estrogen receptors (ER)-alpha and -beta subtypes, while hepatocytes only express ER-alpha. ER and especially the ER-beta subtype, are overexpressed in cholangiocytes proliferating after bile duct ligation (BDL) in the rat, in association with enlarged bile duct mass and with enhanced estradiol serum levels. Cholangiocyte proliferation, during BDL, is impaired by estrogen antagonists (tamoxifen, ICI 182,780) which furthermore, induce the overexpression of Fas antigen and activate apoptosis of proliferating cholangiocytes. 17beta-estradiol stimulates, in vitro cholangiocyte proliferation, and this effect is individually blocked by tamoxifen or ICI 182,780. Cholangiocyte proliferation during BDL was associated with an enhanced protein expression of phosphorylated extracellular regulated kinases (ERK)1/2 which is, in contrast, negatively modulated by tamoxifen in association with its antiproliferative effect. This indicates a major involvement of the ERK system in the estrogen modulation of cholangiocyte proliferation.
Asunto(s)
Conductos Biliares Intrahepáticos/citología , Receptores de Estrógenos/metabolismo , Animales , Conductos Biliares Intrahepáticos/química , División Celular/efectos de los fármacos , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Humanos , Ratas , Transducción de SeñalRESUMEN
VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.
RESUMEN
We studied the effects of alkaline phosphatase (AP) on the secretory processes of the rat intrahepatic biliary epithelium as well as the role of the intrahepatic biliary epithelium in the uptake and biliary secretion of exogenous AP. The effects of acute and chronic administration of AP on bile secretory parameters were investigated in vivo in normal and bile duct ligated (BDL) rats and in vitro in isolated rat bile duct units (IBDU). In vivo, acute AP administration decreased bile flow and biliary bicarbonate excretion and abolished secretin choleresis in BDL rats but not in normal rats. On the contrary, the AP inhibitor, levamisole, increased in BDL rat bile flow and biliary bicarbonate excretion. In vitro, basal and secretin-stimulated Cl(-)/HCO(3)(-) exchanger activity in IBDU was immediately inhibited by AP intraluminal microinjection (apical exposure) but only after a prolonged exposure to the basolateral pole. Levamisole increased the Cl(-)/HCO(3)(-) exchanger activity of IBDU. A significant basolateral uptake of AP occurs in IBDU with a progressive transport to the apical domain. AP chronic treatment increased AP and gamma-glutamyltranspeptidase (gamma-GT) activities in the intrahepatic bile ducts and hepatocyte canalicular pole, promoted enlargement of bile canaliculi, and decreased bile flow and biliary bicarbonate excretion. In conclusion, the intrahepatic biliary epithelium plays a role in the uptake and biliary secretion of serum AP. AP inhibits the secretory processes of the intrahepatic biliary epithelium and induces features of intrahepatic cholestasis after chronic administration. These findings indicate that AP plays an active role in down-regulating the secretory activities of the intrahepatic biliary epithelium.
Asunto(s)
Fosfatasa Alcalina/farmacología , Conductos Biliares/efectos de los fármacos , Bilis/metabolismo , Hígado/efectos de los fármacos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/fisiología , Animales , Antiportadores/análisis , Conductos Biliares/enzimología , Conductos Biliares/metabolismo , Antiportadores de Cloruro-Bicarbonato , Epitelio/metabolismo , Técnicas In Vitro , Levamisol/farmacología , Hígado/enzimología , Hígado/patología , Masculino , ARN Mensajero/análisis , Ratas , Ratas Endogámicas F344RESUMEN
BACKGROUND & AIMS: We investigated the expression of estrogen receptor (ER) alpha and beta subtypes in cholangiocytes of normal and bile duct-ligated (BDL) rats and evaluated the role and mechanisms of estrogens in the modulation of cholangiocyte proliferation. METHODS: ER-alpha and ER-beta were analyzed by immunohistochemistry, reverse-transcription polymerase chain reaction, and Western blotting in normal and BDL rats. The effects of the ER antagonists tamoxifen and ICI 182,780 on cholangiocyte proliferation were evaluated. RESULTS: Cholangiocytes expressed both ER-alpha and ER-beta subtypes, whereas hepatocytes expressed only ER-alpha. In association with a marked cholangiocyte proliferation and with enhanced estradiol serum levels, the immunoreactivity for ER-alpha involved a 3-fold higher percentage of cholangiocytes in 3-week BDL than in normal rats; immunoreactivity for ER-beta showed a 30-fold increase. Western blot analysis showed that during BDL, the total amount of ER-beta in cholangiocytes was markedly increased (5-fold), whereas that of ER-alpha decreased slightly (-25%). Treatment with tamoxifen or ICI 182,780 of 3-week BDL rats inhibited cholangiocyte proliferation and induced overexpression of Fas antigen and apoptosis in cholangiocytes. In vitro, 17 beta estradiol stimulated proliferation of cholangiocyte, an effect blocked to the same extent by tamoxifen or ICI 182,780. CONCLUSIONS: This study suggests that estrogens and their receptors play a role in the modulation of cholangiocyte proliferation.
Asunto(s)
Conductos Biliares Intrahepáticos/citología , Estradiol/análogos & derivados , Estrógenos/fisiología , Animales , Apoptosis/efectos de los fármacos , Conductos Biliares/citología , Conductos Biliares/efectos de los fármacos , Western Blotting , División Celular/efectos de los fármacos , División Celular/fisiología , Células Epiteliales/citología , Estradiol/sangre , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Fulvestrant , Inmunohistoquímica , Ligadura , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tamoxifeno/farmacologíaRESUMEN
The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.