RESUMEN
IMPORTANCE: Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Infecciones por VIH , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Viremia , Animales , Niño , Humanos , Animales Recién Nacidos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Viremia/inmunología , Viremia/virología , VIH/inmunología , VIH/fisiologíaRESUMEN
BACKGROUND: A suboptimal response to the 2-dose COVID-19 vaccine series in the immunocompromised population prompted recommendations for a 3rd primary dose. We aimed to determine the humoral and cellular immune response to the 3rd COVID-19 vaccine in immunocompromised children. METHODS: Prospective cohort study of immunocompromised participants, 5-21 years old, who received 2 prior doses of an mRNA COVID-19 vaccine. Humoral and CD4/CD8 T-cell responses were measured to SARS-CoV-2 spike antigens prior to receiving the 3rd vaccine dose and 3-4 weeks after the 3rd dose was given. RESULTS: Of the 37 participants, approximately half were solid organ transplant recipients. The majority (86.5%) had a detectable humoral response after the 2nd and 3rd vaccine doses, with a significant increase in antibody levels after the 3rd dose. Positive T-cell responses increased from being present in 86.5% to 100% of the cohort after the 3rd dose. CONCLUSIONS: Most immunocompromised children mount a humoral and cellular immune response to the 2-dose COVID-19 vaccine series, which is significantly augmented after receiving the 3rd vaccine dose. This supports the utility of the 3rd vaccine dose and the rationale for ongoing emphasis for vaccination against COVID-19 in this population. IMPACT: Most immunocompromised children mount a humoral and cellular immune response to the 2-dose COVID-19 vaccine series, which is significantly augmented after receiving the 3rd vaccine dose. This is the first prospective cohort study to analyze both the humoral and T-cell immune response to the 3rd COVID-19 primary vaccine dose in children who are immunocompromised. The results of this study support the utility of the 3rd vaccine dose and the rationale for ongoing emphasis for vaccination against COVID-19 in the immunosuppressed pediatric population.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Niño , Humanos , Preescolar , Adolescente , Adulto Joven , Adulto , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Linfocitos T CD8-positivos , Vacunación , Anticuerpos Antivirales , Inmunidad Celular , Inmunidad HumoralRESUMEN
The SARS-CoV-2 Omicron variant has caused infections among individuals vaccinated or with prior COVID-19, suggesting immune escape. Here, we showed a decrease in binding and surrogate neutralizing antibody responses to the Omicron variant after 2 doses of the Pfizer COVID-19 mRNA vaccine. Individuals recovered from infection before vaccination had higher antibody levels and avidity to the Omicron variant compared to individuals vaccinated without infection. This suggested that COVID-19 infection before vaccination elicited a higher magnitude and affinity antibody response to the Omicron variant, and repeated exposure through infection or vaccine may be required to improve immunity to emerging SARS-CoV-2 variants.
Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Afinidad de Anticuerpos , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Vacunación , Anticuerpos Neutralizantes , Vacunas de ARNmRESUMEN
Determining the duration of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical for informing the timing of booster immunization. Many genetic and environmental factors could influence both the magnitude and persistence of the antibody response. Here, we showed that SARS-CoV-2 infection before vaccination and age affected the decay of antibody responses to the SARS-CoV-2 messenger RNA vaccine.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
BACKGROUND: The global pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with the SARS-CoV-2 virus. Currently, there are three approved vaccines against SARS-CoV-2 in the USA, including two based on messenger RNA (mRNA) technology that has demonstrated high vaccine efficacy. We sought to characterize humoral immune responses, at high resolution, during immunization with the BNT162b2 (Pfizer-BioNTech) vaccine in individuals with or without prior history of natural SARS-CoV-2 infection. METHODS: We determined antibody responses after each dose of the BNT162b2 SARS-CoV-2 vaccine in individuals who had no prior history of SARS-CoV-2 infection (seronegative) and individuals that had previous viral infection 30-60 days prior to first vaccination (seropositive). To do this, we used both an antibody isotype-specific multiplexed bead-based binding assays targeting multiple SARS-CoV-2 viral protein antigens and an assay that identified potential SARS-CoV-2 neutralizing antibody levels. Moreover, we mapped antibody epitope specificity after immunization using SARS-CoV-2 spike protein peptide arrays. RESULTS: Antibody levels were significantly higher after a single dose in seropositive individuals compared to seronegative individuals and were comparable to levels observed in seronegative individuals after two doses. While IgG was boosted by vaccination for both seronegative and seropositive individuals, only seronegative individuals had increased IgA or IgM antibody titers after primary immunization. We identified immunodominant peptides targeted on both SARS-CoV-2 spike S1 and S2 subunits after vaccination. CONCLUSION: These findings demonstrated the antibody responses to SARS-CoV-2 immunization in seropositive and seronegative individuals and provide support for the concept of using prior infection history as a guide for the consideration of future vaccination regimens. Moreover, we identified key epitopes on the SARS-CoV-2 spike protein that are targeted by antibodies after vaccination that could guide future vaccine and immune correlate development.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Humoral , Adulto , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19/inmunología , Niño , Femenino , Humanos , Persona de Mediana Edad , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del CoronavirusAsunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Vacuna BNT162 , Prueba Serológica para COVID-19 , Humanos , Inmunoglobulina G/sangre , Potencia de la VacunaRESUMEN
BACKGROUND: Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations. The mechanisms of this variable long-term immune activation are poorly defined. One feature of this increased inflammation is elevated levels of proinflammatory cytokines and chemokines. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. METHODS: Here, we deeply profiled the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We measured the levels of immunoglobulin subclasses (IgG, IgA, IgM) in the peripheral blood against ACE2 and 23 cytokines and other immune molecules. We then utilized an ACE2 peptide microarray to map the linear epitopes targeted by ACE2 autoantibodies. RESULTS: We demonstrate that ACE2 autoantibody levels are increased in individuals with severe COVID-19 compared with those with mild infection or no prior infection. We identify epitopes near the catalytic domain of ACE2 targeted by these antibodies. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection. CONCLUSIONS: These results demonstrate that SARS-CoV-2 infection can increase autoantibody levels to ACE2 and other immune factors. The levels of these autoantibodies are associated with COVID-19 disease severity.
Antibodies are small proteins that are produced by your immune system to protect you when an unwanted foreign invader such as bacteria, viruses and toxins enters your body. When these antibodies target proteins on our own cells instead of the invader, we call them autoantibodies. Autoantibodies that target host immune molecules, as well as ACE2, a receptor molecule that interacts with the SARS-CoV-2 virus, have been observed after COVID-19. We found that patients who had severe COVID-19 displayed higher levels of these autoantibodies compared to those who had mild infection or were uninfected. These findings suggest that these autoantibody levels could serve as indicators of COVID-19 severity.
RESUMEN
Recent studies have revealed the pervasive landscape of rare structural variants (rSVs) present in human genomes. rSVs can have extreme effects on the expression of proximal genes and, in a rare disease context, have been implicated in patient cases where no diagnostic single nucleotide variant (SNV) was found. Approaches for integrating rSVs to date have focused on targeted approaches in known Mendelian rare disease genes. This approach is intractable for rare diseases with many causal loci or patients with complex, multi-phenotype syndromes. We hypothesized that integrating trait-relevant polygenic scores (PGS) would provide a substantial reduction in the number of candidate disease genes in which to assess rSV effects. We further implemented a method for ranking PGS genes to define a set of core/key genes where a rSV has the potential to exert relatively larger effects on disease risk. Among a subset of patients enrolled in the Genomic Answers for Kids (GA4K) rare disease program (N=497), we used PacBio HiFi long-read whole genome sequencing (lrWGS) to identify rSVs intersecting genes in trait-relevant PGSs. Illustrating our approach in Autism (N=54 cases), we identified 22, 019 deletions, 2,041 duplications, 87,826 insertions, and 214 inversions overlapping putative core/key PGS genes. Additionally, by integrating genomic constraint annotations from gnomAD, we observed that rare duplications overlapping putative core/key PGS genes were frequently in higher constraint regions compared to controls (P = 1×10-03). This difference was not observed in the lowest-ranked gene set (P = 0.15). Overall, our study provides a framework for the annotation of long-read rSVs from lrWGS data and prioritization of disease-linked genomic regions for downstream functional validation of rSV impacts. To enable reuse by other researchers, we have made SV allele frequencies and gene associations freely available.
RESUMEN
Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations referred to as post-acute sequalae of COVID (PASC). The mechanisms of this variable long-term immune activation are poorly defined. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. Here, we deeply pro led the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We identified epitopes in the catalytic domain of ACE2 targeted by these antibodies, that could inhibit ACE2 function. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection.
RESUMEN
Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.
Asunto(s)
Lactancia , Leche Humana , Lactante , Femenino , Humanos , Niño , Leche Humana/química , Leche Humana/metabolismo , Inmunoglobulinas/metabolismo , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismoRESUMEN
Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.
RESUMEN
SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared sequence homology to proteins in commensal gut microbiota and could prime immune responses in humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics and vaccines.