Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharmaceutics ; 15(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631291

RESUMEN

Drug-loaded perfluorocarbon nanodroplets (NDs) can be activated non-invasively by focused ultrasound (FUS) and allow for precise drug-delivery. Anesthetic-loaded NDs and transcranial FUS have previously achieved targeted neuromodulation. To assess the clinical potential of anesthetic-loaded NDs, in depth physical characterization and investigation of storage strategies and triggered-activation is necessary. Pentobarbital-loaded decafluorobutane nanodroplets (PBNDs) with a Definity-derived lipid shell (237 nm; 4.08 × 109 particles/mL) were fabricated and assessed. Change in droplet stability, concentration, and drug-release efficacy were tested for PBNDs frozen at -80 °C over 4 weeks. PBND diameter and the polydispersity index of thawed droplets remained consistent up to 14 days frozen. Cryo-TEM images revealed NDs begin to lose circularity at 7 days, and by 14 days, perfluorocarbon dissolution and lipid fragmentation occurred. The level of acoustic response and drug release decreases through prolonged storage. PBNDs showed no hemolytic activity at clinically relevant concentrations and conditions. At increasing sonication pressures, liquid PBNDs vaporized into gas microbubbles, and acoustic activity at the second harmonic frequency (2 f0) peaked at lower pressures than the subharmonic frequency (1/2 f0). Definity-based PBNDs have been thoroughly characterized, cryo-TEM has been shown to be suitable to image the internal structure of volatile NDs, and PBNDs can be reliably stored at -80 °C for future use up to 7 days without significant degradation, loss of acoustic response, or reduction in ultrasound-triggered drug release.

2.
Ann Clin Transl Neurol ; 10(4): 507-519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36715553

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is often associated with neuropsychiatric symptoms, including agitation and aggressive behavior. These symptoms increase with disease severity, ranging from 10% in mild cognitive impairment to 50% in patients with moderate-to-severe AD, pose a great risk for self-injury and injury to caregivers, result in high rates of institutionalization and great suffering for patients and families. Current pharmacological therapies have limited efficacy and a high potential for severe side effects. Thus, there is a growing need to develop novel therapeutics tailored to safely and effectively reduce agitation and aggressive behavior in AD. Here, we investigate for the first time the use of focused ultrasound combined with anesthetic-loaded nanodroplets (nanoFUS) targeting the amygdala (key structure in the neurocircuitry of agitation) as a novel minimally invasive tool to modulate local neural activity and reduce agitation and aggressive behavior in the TgCRND8 AD transgenic mice. METHODS: Male and female animals were tested in the resident-intruder (i.e., aggressive behavior) and open-field tests (i.e., motor agitation) for baseline measures, followed by treatment with active- or sham-nanoFUS. Behavioral testing was then repeated after treatment. RESULTS: Active-nanoFUS neuromodulation reduced aggressive behavior and agitation in male mice, as compared to sham-treated controls. Treatment with active-nanoFUS increased the time male mice spent in social-non-aggressive behaviors. INTERPRETATION: Our results show that neuromodulation with active-nanoFUS may be a potential therapeutic tool for the treatment of neuropsychiatric symptoms, with special focus on agitation and aggressive behaviors. Further studies are necessary to establish cellular, molecular and long-term behavioral changes following treatment with nanoFUS.


Asunto(s)
Enfermedad de Alzheimer , Anestésicos , Disfunción Cognitiva , Masculino , Femenino , Ratones , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/diagnóstico , Cuidadores , Agresión/psicología , Disfunción Cognitiva/tratamiento farmacológico , Anestésicos/uso terapéutico
3.
Med Phys ; 50(12): 7478-7497, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37702919

RESUMEN

BACKGROUND: High resolution imaging of the microvasculature plays an important role in both diagnostic and therapeutic applications in the brain. However, ultrasound pulse-echo sonography imaging the brain vasculatures has been limited to narrow acoustic windows and low frequencies due to the distortion of the skull bone, which sacrifices axial resolution since it is pulse length dependent. PURPOSE: To overcome the detect limit, a large aperture 256-module sparse hemispherical transmit/receive array was used to visualize the acoustic emissions of ultrasound-vaporized lipid-coated decafluorobutane nanodroplets flowing through tube phantoms and within rabbit cerebral vasculature in vivo via passive acoustic mapping and super resolution techniques. METHODS: Nanodroplets were vaporized with 55 kHz burst-mode ultrasound (burst length = 145 µs, burst repetition frequency = 9-45 Hz, peak negative acoustic pressure = 0.10-0.22 MPa), which propagates through overlying tissues well without suffering from severe distortions. The resulting emissions were received at a higher frequency (612 or 1224 kHz subarray) to improve the resulting spatial resolution during passive beamforming. Normal resolution three-dimensional images were formed using a delay, sum, and integrate beamforming algorithm, and super-resolved images were extracted via Gaussian fitting of the estimated point-spread-function to the normal resolution data. RESULTS: With super resolution techniques, the mean lateral (axial) full-width-at-half-maximum image intensity was 16 ± 3 (32 ± 6) µm, and 7 ± 1 (15 ± 2) µm corresponding to ∼1/67 of the normal resolution at 612 and 1224 kHz, respectively. The mean positional uncertainties were ∼1/350 (lateral) and ∼1/180 (axial) of the receive wavelength in water. In addition, a temporal correlation between nanodroplet vaporization and the transmit waveform shape was observed, which may provide the opportunity to enhance the signal-to-noise ratio in future studies. CONCLUSIONS: Here, we demonstrate the feasibility of vaporizing nanodroplets via low frequency ultrasound and simultaneously performing spatial mapping via passive beamforming at higher frequencies to improve the resulting spatial resolution of super resolution imaging techniques. This method may enable complete four-dimensional vascular mapping in organs where a hemispherical array could be positioned to surround the target, such as the brain, breast, or testicles.


Asunto(s)
Imagenología Tridimensional , Terapia por Ultrasonido , Animales , Conejos , Imagenología Tridimensional/métodos , Ultrasonografía/métodos , Encéfalo/diagnóstico por imagen , Terapia por Ultrasonido/métodos , Cráneo/diagnóstico por imagen , Fantasmas de Imagen
4.
Nanotheranostics ; 6(4): 376-387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795341

RESUMEN

In sonodynamic therapy, cellular toxicity from sonosensitizer drugs, such as 5-aminolevulinic acid hydrochloride (5-ALA), may be triggered with focused ultrasound through the production of reactive oxygen species (ROS). Here we show that by increasing local oxygen during treatment, using oxygen-loaded perfluorocarbon nanodroplets (250 +/- 8 nm), we can increase the damage induced by 5-ALA, and monitor the severity by recording acoustic emissions in the brain. To achieve this, we sonicated the right striatum of 16 healthy rats after an intravenous dose of 5-ALA (200 mg/kg), followed by saline, nanodroplets, or oxygen-loaded nanodroplets. We assessed haemorrhage, edema and cell apoptosis immediately following, 24 hr, and 48 hr after focused ultrasound treatment. The localized volume of damaged tissue was significantly enhanced by the presence of oxygen-loaded nanodroplets, compared to ultrasound with unloaded nanodroplets (3-fold increase), and ultrasound alone (40-fold increase). Sonicating 1 hr following 5-ALA injection was found to be more potent than 2 hr following 5-ALA injection (2-fold increase), and the severity of tissue damage corresponded to the acoustic emissions from droplet vaporization. Enhancing the local damage from 5-ALA with monitored cavitation activity and additional oxygen could have significant implications in the treatment of atherosclerosis and non-invasive ablative surgeries.


Asunto(s)
Lesiones Encefálicas , Oxígeno , Ácido Aminolevulínico , Animales , Encéfalo , Monitoreo Fisiológico , Ratas , Triptófano Oxigenasa , Ultrasonografía
5.
J Control Release ; 338: 731-741, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34530050

RESUMEN

Drug-loaded nanoscale cavitation agents, called nanodroplets, are an attractive solution to enhance and localize drug delivery, offering increased stability and prolonged half-life in circulation compared to microbubbles. However, the spatial precision with which drug can be released and delivered into brain tissue from such agents has not been directly mapped. Decafluorobutane lipid-shell droplets (206 +/- 6 nm) were loaded with a fluorescent blood-brain barrier (BBB)-penetrating dye (Nile Blue) and vaporized with ultrasound (1.66 MHz, 10 ms pulse length, 1 Hz pulse repetition frequency), generating transient echogenic microbubbles and delivering the encapsulated dye. The distribution and intensity of released fluorophore was mapped in a tissue-mimicking phantom, and in the brain of rats (Sprague Dawley, N = 4, n = 16). The release and distribution of dye was found to be pressure-dependent (0.2-3.5 MPa) and to occur only above the vaporization threshold of the nanodroplets (1.5 +/- 0.25 MPa in vitro, 2.4 +/- 0.05 MPa in vivo). Dye delivery was achieved with sub-millimetre spatial precision, covering an area of 0.4 to 1.5 mm in diameter, determined by the sonication pressure. The distribution and intensity of dye released at depth in the brain followed the axial pressure profile of the ultrasound beam. Nile Blue (354 Da, LogP 2.7) was compared to Nile Red (318 Da, LogP 3.8) and Quantum Dots (CdSe/ZnS, 5 nm diameter) to visualize the role of molecule size and lipophilicity in crossing the intact BBB following triggered release. Acoustic emissions were shown to predict the successful delivery of the BBB-penetrating dye and the extent of the distribution, demonstrating the theranostic capabilities of nanoscale droplets to precisely localize drug delivery in the brain.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Animales , Barrera Hematoencefálica , Encéfalo/diagnóstico por imagen , Microburbujas , Ratas , Ratas Sprague-Dawley , Sonicación
6.
Methods Appl Fluoresc ; 9(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33316782

RESUMEN

Studying the biodistribution of novel therapeutics and biomaterialsin vivorequires effective and consistent perfusion and fixation of major organs. Standard methods for removing red blood cells (RBCs) and fixing tissue often involve transcardial perfusion, such as brain-targeted perfusion (via the left ventricle) or lung-targeted perfusion (via the right ventricle). Using autofluorescence measurements and a bespoke ImageJ macro to quantify RBC content from histology, we compared the efficacy and consistency of three whole-body perfusion techniques. We show that lung-targeted perfusion evacuates more blood from the lung vasculature than brain-targeted perfusion (20 ± 54% fewer RBCs), and that our novel approach of 'dual-targeted' perfusion (via the right and left ventricles sequentially) had even higher efficacy (30 ± 6% fewer RBCs). Furthermore, by combining aspects of brain- and lung-targeted methods, dual-targeted perfusion achieved the highest consistency in autofluorescence emissions from major organs (64% and 65% lower variance than brain- and lung-targeted perfusion respectively). Since RBC content and autofluorescence can be confounding factors in biodistribution studies using fluorescent probes, our findings and proposed novel approach offer insight into perfusion fixation techniques for pre-clinical studies.


Asunto(s)
Eritrocitos , Procesamiento de Imagen Asistido por Computador , Pulmón , Perfusión , Distribución Tisular
7.
Int Rev Neurobiol ; 159: 221-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34446247

RESUMEN

Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.


Asunto(s)
Neuronas , Procedimientos Neuroquirúrgicos , Procedimientos Quirúrgicos Ultrasónicos , Humanos , Neuronas/fisiología , Procedimientos Neuroquirúrgicos/métodos
8.
J Control Release ; 332: 30-39, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33600879

RESUMEN

Focused ultrasound (FUS) offers an attractive tool for non-invasive neuromodulation, addressing a clinical need to develop more minimally invasive approaches that are safer, more tolerable and versatile. In combination with a cavitation agent, the effects of ultrasound can be amplified and localized for therapy. Using c-Fos expression mapping, we show how ultrasound-sensitive nanodroplets can be used to induce either neurosuppression or neurostimulation, without disrupting the blood-brain barrier in rats. By repurposing a commercial ultrasound contrast agent, Definity, lipid-shell decafluorobutane-core nanodroplets of 212.5 ± 2.0 nm were fabricated and loaded with or without pentobarbital. FUS was delivered with an atlas-based targeting system at 1.66 MHz to the motor cortex of rats, using a feedback-controller to detect successful nanodroplet vaporization and drug release. Neuromodulation was quantified through changes in sensorimotor function and c-Fos expression. Following FUS-triggered delivery, sham nanodroplets induced a 22.6 ± 21% increase in local c-Fos expression, whereas pentobarbital-loaded nanodroplets induced a 21.7 ± 13% decrease (n = 6). Nanodroplets, combined with FUS, offer an adaptable tool for neuromodulation, through local delivery of small molecule anesthetics or targeted mechanical effects.


Asunto(s)
Barrera Hematoencefálica , Medios de Contraste , Animales , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Pentobarbital , Ratas , Ultrasonografía
9.
Theranostics ; 10(6): 2849-2858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194839

RESUMEN

Background: Targeted neuromodulation is a valuable technique for the study and treatment of the brain. Using focused ultrasound to target the local delivery of anesthetics in the brain offers a safe and reproducible option for suppressing neuronal activity. Objective: To develop a potential new tool for localized neuromodulation through the triggered release of pentobarbital from ultrasound-responsive nanodroplets. Method: The commercial microbubble contrast agent, Definity, was filled with decafluorobutane gas and loaded with a lipophilic anesthetic drug, before being condensed into liquid-filled nanodroplets of 210 ± 80 nm. Focused ultrasound at 0.58 MHz was found to convert nanodroplets into microbubbles, simultaneously releasing the drug and inducing local anesthesia in the motor cortex of rats (n=8). Results: Behavioral analysis indicated a 19.1 ± 13% motor deficit on the contralateral side of treated animals, assessed through the cylinder test and gait analysis, illustrating successful local anesthesia, without compromising the blood-brain barrier. Conclusion: Pentobarbital-loaded decafluorobutane-core Definity-based nanodroplets are a potential agent for ultrasound-triggered and targeted neuromodulation.


Asunto(s)
Anestesia/métodos , Sistemas de Liberación de Medicamentos/métodos , Hipnóticos y Sedantes/farmacocinética , Nanopartículas/uso terapéutico , Pentobarbital/farmacocinética , Ultrasonografía , Animales , Fluorocarburos/química , Hipnóticos y Sedantes/administración & dosificación , Masculino , Microburbujas/uso terapéutico , Pentobarbital/administración & dosificación , Ratas , Ratas Sprague-Dawley
10.
J Control Release ; 309: 25-36, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326464

RESUMEN

The blood-brain barrier, while fundamental in maintaining homeostasis in the central nervous system, is a bottleneck to achieving efficacy for numerous therapeutics. Improved brain penetration is also desirable for reduced dose, cost, and systemic side effects. Transient disruption of the blood-brain barrier with focused ultrasound (FUS) can facilitate drug delivery noninvasively with precise spatial and temporal specificity. FUS technology is transcranial and effective without further drug modifications, key advantages that will accelerate adoption and translation of existing therapeutic pipelines. In this review, we performed a comprehensive literature search to build a database and provide a synthesis of ultrasound parameters and drug characteristics that influence the safety and efficacy profile of FUS to enhance drug delivery.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/instrumentación , Microburbujas , Preparaciones Farmacéuticas/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inflamación/etiología , Farmacocinética , Terapia por Ultrasonido/efectos adversos , Terapia por Ultrasonido/instrumentación , Terapia por Ultrasonido/métodos
11.
Ultrasound Med Biol ; 45(4): 954-967, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30655109

RESUMEN

Ultrasound-induced cavitation has been proposed as a strategy to tackle the challenge of inadequate extravasation, penetration and distribution of therapeutics into tumours. Here, the ability of microbubbles, droplets and solid gas-trapping particles to facilitate mass transport and extravasation of a model therapeutic agent following ultrasound-induced cavitation is investigated. Significant extravasation and penetration depths on the order of millimetres are achieved with all three agents, including the range of pressures and frequencies achievable with existing clinical ultrasound systems. Deeper but highly directional extravasation was achieved with frequencies of 1.6 and 3.3 MHz compared with 0.5 MHz. Increased extravasation was observed with increasing pulse length and exposure time, while an inverse relationship is observed with pulse repetition frequency. No significant cell death or any haemolytic activity in human blood was observed at clinically relevant concentrations for any of the agents. Overall, solid gas-trapping nanoparticles were found to enable the most extensive extravasation for the lowest input acoustic energy, followed by microbubbles and then droplets. The ability of these agents to produce sustained inertial cavitation activity whilst being small enough to follow the drug out of the circulation and into diseased tissue, combined with a good safety profile and the possibility of real-time monitoring, offers considerable potential for enhanced drug delivery of unmodified drugs in oncological and other biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Microburbujas , Nanopartículas/administración & dosificación , Fosfolípidos/administración & dosificación , Sonicación/métodos , Hexafluoruro de Azufre/administración & dosificación , Fantasmas de Imagen
13.
Phys Med Biol ; 61(22): 7906-7918, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27779121

RESUMEN

A significant barrier to successful drug delivery is the limited penetration of nanoscale therapeutics beyond the vasculature. Building on recent in vivo findings in the context of cancer drug delivery, the current study investigates whether modification of nanoparticle drug-carriers to increase their density can be used to enhance their penetration into viscoelastic materials under ultrasound exposure. A computational model is first presented to predict the transport of identically sized nanoparticles of different densities in an ultrasonic field in the presence of an oscillating microbubble, by a combination of primary and secondary acoustic radiation forces, acoustic streaming and microstreaming. Experiments are then described in which near monodisperse (polydispersity index <0.2) nanoparticles of approximate mean diameter 200 nm and densities ranging from 1.01 g cm-3 to 5.58 g cm-3 were fabricated and delivered to a tissue-mimicking material in the presence or absence of a microbubble ultrasound contrast agent, at ultrasound frequencies of 0.5 MHz and 1.6 MHz and a peak negative pressure of 1 MPa. Both the theoretical and experimental results confirm that denser particles exhibit significantly greater ultrasound-mediated transport than their lower density counterparts, indicating that density is a key consideration in the design of nanoscale therapeutics.


Asunto(s)
Acústica , Medios de Contraste/química , Sistemas de Liberación de Medicamentos/métodos , Microburbujas , Nanopartículas/química , Ultrasonografía/métodos , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA