RESUMEN
Most kidney cancers are metabolically dysfunctional1-4, but how this dysfunction affects cancer progression in humans is unknown. We infused 13C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-13C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming. Compared with the adjacent kidney, clear cell renal cell carcinomas (ccRCCs) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in ex vivo organotypic cultures, indicating that suppressed labelling is tissue intrinsic. [1,2-13C]acetate and [U-13C]glutamine infusions in patients, coupled with measurements of respiration in isolated human kidney and tumour mitochondria, reveal lower electron transport chain activity in ccRCCs that contributes to decreased oxidative and enhanced reductive TCA cycle labelling. However, ccRCC metastases unexpectedly have enhanced TCA cycle labelling compared with that of primary ccRCCs, indicating a divergent metabolic program during metastasis in patients. In mice, stimulating respiration or NADH recycling in kidney cancer cells is sufficient to promote metastasis, whereas inhibiting electron transport chain complex I decreases metastasis. These findings in humans and mice indicate that metabolic properties and liabilities evolve during kidney cancer progression, and that mitochondrial function is limiting for metastasis but not growth at the original site.
Asunto(s)
Complejo I de Transporte de Electrón , Neoplasias Renales , Mitocondrias , Metástasis de la Neoplasia , Animales , Femenino , Humanos , Masculino , Ratones , Acetatos/metabolismo , Isótopos de Carbono/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Respiración de la Célula , Ciclo del Ácido Cítrico , Progresión de la Enfermedad , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-ReducciónRESUMEN
The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.
Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Insect pests and pollinators can interact directly and indirectly to affect crop production; however, impacts of these interactions on marketable yield are little known. Thus, the evaluation of interactions between pests and pollinators are needed to best prioritize management efforts. Over 2 years, we evaluated the impact of pollinator visitation and/or beetle (Acalymma vittatum) infestation on fruit set and yield in seedless watermelon production. In 2020, we tested the main effect of pollinator visitation: two or eight honeybee visits, two wild bee visits, hand pollinated and open pollinated. In 2021, we crossed wild and managed pollinator visitation (two or four honeybee visits, two or four wild bee visits, hand pollinated and open pollinated) with varying beetle infestation levels (0, 3, 6 and 9 beetles/plant). In both years, wild bees contributed significantly to high fruit yields, and exclusive visitation from wild bees increased yield by a factor of 1.5-3 compared to honeybees. In 2021, pollination was the only significant factor for fruit set and marketable yield even when compared to the varying beetle infestation levels. These data advocate for a reprioritization of management, to conserve and protect wild bee pollination, which could be more critical than avoiding pest damage for ensuring high yields.
Asunto(s)
Citrullus , Escarabajos , Abejas , Animales , Productos Agrícolas , Polinización , Insectos , FloresRESUMEN
Iris yellow spot virus (IYSV) from the genus Tospovirus, family Peribunyaviridae, reduces yield in several crops, especially Allium spp. IYSV is primarily transmitted by onion thrips (Thrips tabaci), but little is known about how IYSV impacts the biology of its principal vector. In a controlled experiment, the effect of IYSV on the lifespan and fecundity of onion thrips was examined. Larvae were reared on IYSV-infected onions until pupation. Individual pupae were confined until adults eclosed, and the lifespan and total progeny produced per adult were monitored daily. Thrips were tested for the virus in reverse-transcriptase polymerase chain reaction using specific primers to confirm the presence of IYSV. Results indicated that 114 and 35 out of 149 eclosing adults tested positive (viruliferous) and negative (nonviruliferous) for IYSV, respectively. The viruliferous adults lived 1.1-6.1 d longer (average of 3.6 d) than nonviruliferous adults. Fecundity of viruliferous and nonviruliferous onion thrips was similar with 2.0 ± 0.1 and 2.3 ± 0.3 offspring produced per female per day, respectively. Fecundity for both viruliferous and nonviruliferous thrips also was significantly positively correlated with lifespan. These findings suggest that the longer lifespan of viruliferous onion thrips adults may allow this primary vector of IYSV to infect more plants, thereby exacerbating IYSV epidemics.
Asunto(s)
Thysanoptera/virología , Tospovirus/fisiología , Animales , Femenino , Fertilidad , Insectos Vectores/virología , Longevidad , Cebollas/virología , Enfermedades de las Plantas/virología , Thysanoptera/fisiologíaRESUMEN
With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled "superpedigrees" are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening.
Asunto(s)
Mutación Puntual , Alelos , Animales , Femenino , Genes Letales , Ligamiento Genético , Masculino , Ratones , Linaje , Fenotipo , Sitios de Carácter CuantitativoRESUMEN
Iris yellow spot virus (IYSV) is an economically significant tospovirus of onion transmitted by onion thrips (Thrips tabaci Lindeman). IYSV epidemics in onion fields are common in New York; however, the role of various habitats contributing to viruliferous onion thrips populations and IYSV epidemics is not known. In a 2-year field study in New York, the abundance of dispersing onion thrips, including those determined to be viruliferous via reverse-transcriptase polymerase chain reaction, was recorded in habitats known to harbor both IYSV and its vector. Results showed that viruliferous thrips were encountered in all habitats; however, transplanted onion sites accounted for 49 to 51% of the total estimated numbers of viruliferous thrips. During early to midseason, transplanted onion sites had 9 to 11 times more viruliferous thrips than the other habitats. These results indicate that transplanted onion fields are the most important habitat for generating IYSV epidemics in all onion fields (transplanted and direct-seeded) in New York. Our findings suggest that onion growers should control onion thrips in transplanted fields early in the season to minimize risk of IYSV epidemics later in the season.
Asunto(s)
Cebollas/parasitología , Thysanoptera/fisiología , Thysanoptera/virología , Tospovirus/fisiología , Animales , Ecosistema , Epidemias , Geografía , Insectos Vectores/genética , Insectos Vectores/fisiología , Insectos Vectores/virología , New York , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Estaciones del Año , Thysanoptera/genética , Tospovirus/genéticaRESUMEN
Most kidney cancers display evidence of metabolic dysfunction1-4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-13C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2-13C]acetate and [U-13C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.
RESUMEN
Spotted lanternfly (SLF) is an invasive insect in the Northeastern U.S. projected to spread nationally and globally. While SLF is a significant pest of vineyards, little is known about the pest in grape agroecosystems including its spatial ecology. SLF spatial patterns were analyzed using a combination of approaches including generalized linear mixed effect models, Moran's I statistic for spatial clustering, and Empirical Bayesian Kriging. Analysis revealed that SLF displayed significantly clumped distributions in monitored vineyards. Approximately 54% and 44% of the respective adult and egg mass populations were observed within the first 15 m of the vineyard edge. Importantly, the spatial concentration of adults at the edge was consistent temporally, both between years and weeks. Moreover, high populations of SLF on vines were significantly correlated with reduced fruit production in the following year. Mark-release-recapture of SLF revealed that higher proportions of SLF were recaptured on vines with high pre-existing SLF populations, indicating that SLF may exhibit aggregation behavior along vineyard perimeters. Monitoring and management efforts for SLF should be prioritized around vineyard edges as it may significantly reduce infestations and subsequent damage.
RESUMEN
BACKGROUND: Insecticide resistance management (IRM) practices that improve the sustainability of agricultural production systems are developed, but few studies address the challenges with their implementation and success rates of adoption. This study examined the effectiveness of a voluntary, extension-based program to increase grower adoption of IRM practices for onion thrips (Thrips tabaci) in onion. The program sought to increase the use of two important IRM practices: rotating classes of insecticides during the growing season and applying insecticides following an action threshold. RESULTS: Onion growers (n = 17) increased their adoption of both IRM practices over the 3-year study. Growers increased use of insecticide class rotation from 76% to 100% and use of the action threshold for determining whether to apply insecticides from 57% to 82%. Growers who always used action thresholds successfully controlled onion thrips infestations, applied significantly fewer insecticide applications (one to four fewer applications) and spent $148/ha less on insecticides compared with growers who rarely used the action threshold. Growers who regularly used action thresholds and rotated insecticide classes did so because they were primarily concerned about insecticide resistance development in thrips populations. CONCLUSION: Implementation of the IRM education program was successful, as adoption rates of both practices increased within 3 years. Growers were surprisingly most receptive to adopting these practices to mitigate insecticide resistance as opposed to saving money. Developing extension-based programs that involve regular and interactive meetings with growers may significantly increase the adoption of IRM and related integrated pest management tactics. © 2018 Society of Chemical Industry.