Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 95(6): 1127-1137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481022

RESUMEN

OBJECTIVE: In the era of stereoelectroencephalography (SEEG), many studies have been devoted to understanding the role of interictal high-frequency oscillations. High-frequency activity (HFA) at seizure onset has been identified as a marker of epileptogenic zone. We address the physiological significance of ictal HFAs and their relation to clinical semiology. METHODS: We retrospectively identified patients with pure focal primary motor epilepsy. We selected only patients in whom SEEG electrodes were optimally placed in the motor cortex as confirmed by electrical stimulation. Based on these narrow inclusion criteria, we extensively studied 5 patients (3 males and 2 females, mean age = 22.4 years) using time-frequency analysis and time correlation with motor signs onset. RESULTS: A total of 157 analyzable seizures were recorded in 5 subjects. The first 2 subjects had tonic or clonic semiology with rare secondary generalization. Subject 3 had atonic onset followed by clonic hand/arm flexion. Subject 4 had clusters of tonic and atonic facial movements. Subject 5 had upper extremity tonic movements. The median frequency of the fast activity extracted from the Epileptogenic Zone Fingerprint pipeline in the first 4 subjects was 76 Hz (interquartile range = 21.9Hz). Positive motor signs did not occur concomitantly with high gamma activity developing in the motor cortex. Motor signs began at the end of HFAs. INTERPRETATION: This study supports the hypothesis of an inhibitory effect of ictal HFAs. The frequency range in the gamma band was associated with the direction of the clinical output effect. Changes from inhibitory to excitatory effect occurred when discharge frequency dropped to low gamma or beta. ANN NEUROL 2024;95:1127-1137.


Asunto(s)
Electroencefalografía , Corteza Motora , Convulsiones , Humanos , Masculino , Femenino , Corteza Motora/fisiopatología , Adulto Joven , Estudios Retrospectivos , Adulto , Electroencefalografía/métodos , Convulsiones/fisiopatología , Adolescente , Epilepsia Parcial Motora/fisiopatología , Inhibición Neural/fisiología
2.
Magn Reson Med ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725132

RESUMEN

PURPOSE: To investigate the feasibility of diffusion tensor brain imaging at 0.55T with comparisons against 3T. METHODS: Diffusion tensor imaging data with 2 mm isotropic resolution was acquired on a cohort of five healthy subjects using both 0.55T and 3T scanners. The signal-to-noise ratio (SNR) of the 0.55T data was improved using a previous SNR-enhancing joint reconstruction method that jointly reconstructs the entire set of diffusion weighted images from k-space using shared-edge constraints. Quantitative diffusion tensor parameters were estimated and compared across field strengths. We also performed a test-retest assessment of repeatability at each field strength. RESULTS: After applying SNR-enhancing joint reconstruction, the diffusion tensor parameters obtained from 0.55T data were strongly correlated ( R 2 ≥ 0 . 70 $$ {R}^2\ge 0.70 $$ ) with those obtained from 3T data. Test-retest analysis showed that SNR-enhancing reconstruction improved the repeatability of the 0.55T diffusion tensor parameters. CONCLUSION: High-resolution in vivo diffusion MRI of the human brain is feasible at 0.55T when appropriate noise-mitigation strategies are applied.

3.
Neuroimage ; 270: 119944, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801371

RESUMEN

The human brain is a complex network that exhibits dynamic fluctuations in activity across space and time. Depending on the analysis method, canonical brain networks identified from resting-state fMRI (rs-fMRI) are typically constrained to be either orthogonal or statistically independent in their spatial and/or temporal domains. We avoid imposing these potentially unnatural constraints through the combination of a temporal synchronization process ("BrainSync") and a three-way tensor decomposition method ("NASCAR") to jointly analyze rs-fMRI data from multiple subjects. The resulting set of interacting networks comprises minimally constrained spatiotemporal distributions, each representing one component of functionally coherent activity across the brain. We show that these networks can be clustered into six distinct functional categories and naturally form a representative functional network atlas for a healthy population. This functional network atlas could help explore group and individual differences in neurocognitive function, as we demonstrate in the context of ADHD and IQ prediction.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
Neuroimage ; 281: 120356, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703939

RESUMEN

The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical parcellation, to name but a few. Recent studies have emphasized the importance of selecting the regularization parameter in minimum norm estimates with caution, as variations in its value can result in significant differences in connectivity estimates. In particular, the amount of regularization that is optimal for MEG source estimation can actually be suboptimal for coherence-based MEG connectivity analysis. In this study, we expand upon previous work by examining a broader range of commonly used connectivity metrics, including the imaginary part of coherence, corrected imaginary part of Phase Locking Value, and weighted Phase Lag Index, within a larger and more realistic simulation scenario. Our results show that the best estimate of connectivity is achieved using a regularization parameter that is 1 or 2 orders of magnitude smaller than the one that yields the best source estimation. This remarkable difference may imply that previous work assessing source-space connectivity using minimum-norm may have benefited from using less regularization, as this may have helped reduce false positives. Importantly, we provide the code for MEG data simulation and analysis, offering the research community a valuable open source tool for informed selections of the regularization parameter when using minimum-norm for source space connectivity analyses.

5.
Neuroimage ; 267: 119851, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36599389

RESUMEN

Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.


Asunto(s)
Encéfalo , Cabeza , Humanos , Análisis de Elementos Finitos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Magnetoencefalografía/métodos , Electroencefalografía/métodos , Mapeo Encefálico/métodos , Cuero Cabelludo , Conductividad Eléctrica , Modelos Neurológicos
6.
Cereb Cortex ; 33(1): 114-134, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231927

RESUMEN

The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.


Asunto(s)
Encéfalo , Conectoma , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética , Envejecimiento , Incertidumbre , Mapeo Encefálico/métodos , Red Nerviosa
7.
Knowl Based Syst ; 2382022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36714396

RESUMEN

The presence of outliers can severely degrade learned representations and performance of deep learning methods and hence disproportionately affect the training process, leading to incorrect conclusions about the data. For example, anomaly detection using deep generative models is typically only possible when similar anomalies (or outliers) are not present in the training data. Here we focus on variational autoencoders (VAEs). While the VAE is a popular framework for anomaly detection tasks, we observe that the VAE is unable to detect outliers when the training data contains anomalies that have the same distribution as those in test data. In this paper we focus on robustness to outliers in training data in VAE settings using concepts from robust statistics. We propose a variational lower bound that leads to a robust VAE model that has the same computational complexity as the standard VAE and contains a single automatically-adjusted tuning parameter to control the degree of robustness. We present mathematical formulations for robust variational autoencoders (RVAEs) for Bernoulli, Gaussian and categorical variables. The RVAE model is based on beta-divergence rather than the standard Kullback-Leibler (KL) divergence. We demonstrate the performance of our proposed ß-divergence-based autoencoder for a variety of image and categorical datasets showing improved robustness to outliers both qualitatively and quantitatively. We also illustrate the use of our robust VAE for detection of lesions in brain images, formulated as an anomaly detection task. Finally, we suggest a method to tune the hyperparameter of RVAE which makes our model completely unsupervised.

8.
Neuroimage ; 227: 117615, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33301936

RESUMEN

We describe a novel method for robust identification of common brain networks and their corresponding temporal dynamics across subjects from asynchronous functional MRI (fMRI) using tensor decomposition. We first temporally align asynchronous fMRI data using the orthogonal BrainSync transform, allowing us to study common brain networks across sessions and subjects. We then map the synchronized fMRI data into a 3D tensor (vertices × time × subject/session). Finally, we apply Nesterov-accelerated adaptive moment estimation (Nadam) within a scalable and robust sequential Canonical Polyadic (CP) decomposition framework to identify a low rank tensor approximation to the data. As a result of CP tensor decomposition, we successfully identified twelve known brain networks with their corresponding temporal dynamics from 40 subjects using the Human Connectome Project's language task fMRI data without any prior information regarding the specific task designs. Seven of these networks show distinct subjects' responses to the language task with differing temporal dynamics; two show sub-components of the default mode network that exhibit deactivation during the tasks; the remaining three components reflect non-task-related activities. We compare results to those found using group independent component analysis (ICA) and canonical ICA. Bootstrap analysis demonstrates increased robustness of networks found using the CP tensor approach relative to ICA-based methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Red Nerviosa/diagnóstico por imagen , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Modelos Neurológicos
9.
Magn Reson Med ; 86(1): 197-212, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33594732

RESUMEN

PURPOSE: In many MRI scenarios, magnetization is often excited from spatial regions that are not of immediate interest. Excitation of uninteresting magnetization can complicate the design of efficient imaging methods, leading to either artifacts or acquisitions that are longer than necessary. While there are many hardware- and sequence-based approaches for suppressing unwanted magnetization, this paper approaches this longstanding problem from a different and complementary angle, using beamforming to suppress signals from unwanted regions without modifying the acquisition hardware or pulse sequence. Unlike existing beamforming approaches, we use a spatially invariant sensor-domain approach that can be applied directly to raw data to facilitate image reconstruction. THEORY AND METHODS: We use beamforming to linearly mix a set of original coils into a set of region-optimized virtual (ROVir) coils. ROVir coils optimize a signal-to-interference ratio metric, are easily calculated using simple generalized eigenvalue decomposition methods, and provide coil compression. RESULTS: ROVir coils were compared against existing coil-compression methods, and were demonstrated to have substantially better signal suppression capabilities. In addition, examples were provided in a variety of different application contexts (including brain MRI, vocal tract MRI, and cardiac MRI; accelerated Cartesian and non-Cartesian imaging; and outer volume suppression) that demonstrate the strong potential of this kind of approach. CONCLUSION: The beamforming-based ROVir framework is simple to implement, has promising capabilities to suppress unwanted MRI signal, and is compatible with and complementary to existing signal suppression methods. We believe that this general approach could prove useful across a wide range of different MRI applications.


Asunto(s)
Artefactos , Compresión de Datos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética
10.
Epilepsia ; 62(11): 2753-2765, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34541666

RESUMEN

OBJECTIVE: To determine whether brain connectivity differs between focal cortical dysplasia (FCD) types I and II. METHODS: We compared cortico-cortical evoked potentials (CCEPs) as measures of effective brain connectivity in 25 FCD patients with drug-resistant focal epilepsy who underwent intracranial evaluation with stereo-electroencephalography (SEEG). We analyzed the amplitude and latency of CCEP responses following ictal-onset single-pulse electrical stimulation (iSPES). RESULTS: In comparison to FCD type II, patients with type I demonstrated significantly larger responses in the electrodes near the ictal-onset zone (<50 mm). These findings persisted when controlling for the location of the epileptogenic zone, as noted in patients with temporal lobe epilepsies, as well as controlling for seizure type, as noted in patients with focal to bilateral tonic-clonic seizures (FBTCS). In type II, the root mean square (RMS) of CCEP responses dropped substantially from the early segment (10-60 ms) to the middle and late segments (60-600 ms). The middle and late CCEP latency segments showed the largest differences between FCD types I and II. SIGNIFICANCE: Focal cortical dysplasia type I may have a greater degree of cortical hyperexcitability as compared with FCD type II. In addition, FCD type II displays a more restrictive area of hyperexcitability in both temporal and spatial domains. In patients with FBTCS and type I FCD, the increased amplitudes of RMS in the middle and late CCEP periods appear consistent with the cortico-thalamo-cortical network involvement of FBTCS. The notable differences in degree and extent of hyperexcitability may contribute to the different postsurgical seizure outcomes noted between these two pathological substrates.


Asunto(s)
Epilepsia Refractaria , Malformaciones del Desarrollo Cortical de Grupo I , Malformaciones del Desarrollo Cortical , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía , Epilepsia , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/cirugía , Convulsiones/cirugía
11.
J Neurol Phys Ther ; 45(4): 273-281, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34269747

RESUMEN

BACKGROUND AND PURPOSE: The corticospinal tract (CST) is a crucial brain pathway for distal arm and hand motor control. We aimed to determine whether a diffusion tensor imaging (DTI)-derived CST metric predicts distal upper extremity (UE) motor improvements in chronic stroke survivors. METHODS: We analyzed clinical and neuroimaging data from a randomized controlled rehabilitation trial. Participants completed clinical assessments and neuroimaging at baseline and clinical assessments 4 months later, postintervention. Using univariate linear regression analysis, we determined the linear relationship between the DTI-derived CST fractional anisotropy asymmetry (FAasym) and the percentage of baseline change in log-transformed average Wolf Motor Function Test time for distal items (ΔlnWMFT-distal_%). The least absolute shrinkage and selection operator (LASSO) linear regressions with cross-validation and bootstrapping were used to determine the relative weighting of CST FAasym, other brain metrics, clinical outcomes, and demographics on distal motor improvement. Logistic regression analyses were performed to test whether the CST FAasym can predict clinically significant UE motor improvement. RESULTS: lnWMFT-distal significantly improved at the group level. Baseline CST FAasym explained 26% of the variance in ΔlnWMFT-distal_%. A multivariate LASSO model including baseline CST FAasym, age, and UE Fugl-Meyer explained 39% of the variance in ΔlnWMFT-distal_%. Further, CST FAasym explained more variance in ΔlnWMFT-distal_% than the other significant predictors in the LASSO model. DISCUSSION AND CONCLUSIONS: CST microstructure is a significant predictor of improvement in distal UE motor function in the context of an UE rehabilitation trial in chronic stroke survivors with mild-to-moderate motor impairment.Video Abstract available for more insight from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A350).


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Brazo , Imagen de Difusión Tensora , Humanos , Tractos Piramidales/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Extremidad Superior
12.
Hum Brain Mapp ; 41(2): 429-441, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31609058

RESUMEN

The role of fast activity as a potential biomarker in localization of the epileptogenic zone (EZ) remains controversial due to recently reported unsatisfactory performance. We recently identified a "fingerprint" of the EZ as a time-frequency pattern that is defined by a combination of preictal spike(s), fast oscillatory activity, and concurrent suppression of lower frequencies. Here we examine the generalizability of the fingerprint in application to an independent series of patients (11 seizure-free and 13 non-seizure-free after surgery) and show that the fingerprint can also be identified in seizures with lower frequency (such as beta) oscillatory activity. In the seizure-free group, only 5 of 47 identified EZ contacts were outside the resection. In contrast, in the non-seizure-free group, 104 of 142 identified EZ contacts were outside the resection. We integrated the fingerprint prediction with the subject's MR images, thus providing individualized anatomical estimates of the EZ. We show that these fingerprint-based estimates in seizure-free patients are almost always inside the resection. On the other hand, for a large fraction of the nonseizure-free patients the estimated EZ was not well localized and was partially or completely outside the resection, which may explain surgical failure in such cases. We also show that when mapping fast activity alone onto MR images, the EZ was often over-estimated, indicating a reduced discriminative ability for fast activity relative to the full fingerprint for localization of the EZ.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Electrocorticografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Adolescente , Adulto , Biomarcadores , Corteza Cerebral/cirugía , Niño , Epilepsia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Adulto Joven
13.
Am J Hematol ; 94(10): 1055-1065, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31259431

RESUMEN

Severe chronic anemia is an independent predictor of overt stroke, white matter damage, and cognitive dysfunction in the elderly. Severe anemia also predisposes to white matter strokes in young children, independent of the anemia subtype. We previously demonstrated symmetrically decreased white matter (WM) volumes in patients with sickle cell disease (SCD). In the current study, we investigated whether patients with non-sickle anemia also have lower WM volumes and cognitive dysfunction. Magnetic Resonance Imaging was performed on 52 clinically asymptomatic SCD patients (age = 21.4 ± 7.7; F = 27, M = 25; hemoglobin = 9.6 ± 1.6 g/dL), 26 non-sickle anemic patients (age = 23.9 ± 7.9; F = 14, M = 12; hemoglobin = 10.8 ± 2.5 g/dL) and 40 control subjects (age = 27.7 ± 11.3; F = 28, M = 12; hemoglobin = 13.4 ± 1.3 g/dL). Voxel-wise changes in WM brain volumes were compared to hemoglobin levels to identify brain regions that are vulnerable to anemia. White matter volume was diffusely lower in deep, watershed areas proportionally to anemia severity. After controlling for age, sex, and hemoglobin level, brain volumes were independent of disease. WM volume loss was associated with lower Full Scale Intelligence Quotient (FSIQ; P = .0048; r2 = .18) and an abnormal burden of silent cerebral infarctions (P = .029) in males, but not in females. Hemoglobin count and cognitive measures were similar between subjects with and without white-matter hyperintensities. The spatial distribution of volume loss suggests chronic hypoxic cerebrovascular injury, despite compensatory hyperemia. Neurocognitive consequences of WM volume changes and silent cerebral infarction were strongly sexually dimorphic. Understanding the possible neurological consequences of chronic anemia may help inform our current clinical practices.


Asunto(s)
Anemia Hemolítica Congénita/patología , Encéfalo/patología , Trastornos del Conocimiento/patología , Hemoglobinas/análisis , Sustancia Blanca/patología , Adulto , Anemia Hemolítica Congénita/sangre , Anemia Hemolítica Congénita/complicaciones , Anemia Hemolítica Congénita/genética , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Forma de la Célula , Infarto Cerebral/etiología , Infarto Cerebral/patología , Infarto Cerebral/psicología , Enfermedad Crónica , Trastornos del Conocimiento/sangre , Trastornos del Conocimiento/etiología , Imagen de Difusión Tensora , Eritrocitos/ultraestructura , Etnicidad/genética , Función Ejecutiva , Femenino , Humanos , Pruebas de Inteligencia , Masculino , Memoria a Corto Plazo , Tamaño de los Órganos , Caracteres Sexuales , Adulto Joven
14.
Brain ; 141(1): 117-131, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253102

RESUMEN

Defining a bio-electrical marker for the brain area responsible for initiating a seizure remains an unsolved problem. Fast gamma activity has been identified as the most specific marker for seizure onset, but conflicting results have been reported. In this study, we describe an alternative marker, based on an objective description of interictal to ictal transition, with the aim of identifying a time-frequency pattern or 'fingerprint' that can differentiate the epileptogenic zone from areas of propagation. Seventeen patients who underwent stereoelectroencephalography were included in the study. Each had seizure onset characterized by sustained gamma activity and were seizure-free after tailored resection or laser ablation. We postulated that the epileptogenic zone was always located inside the resection region based on seizure freedom following surgery. To characterize the ictal frequency pattern, we applied the Morlet wavelet transform to data from each pair of adjacent intracerebral electrode contacts. Based on a visual assessment of the time-frequency plots, we hypothesized that a specific time-frequency pattern in the epileptogenic zone should include a combination of (i) sharp transients or spikes; preceding (ii) multiband fast activity concurrent; with (iii) suppression of lower frequencies. To test this hypothesis, we developed software that automatically extracted each of these features from the time-frequency data. We then used a support vector machine to classify each contact-pair as being within epileptogenic zone or not, based on these features. Our machine learning system identified this pattern in 15 of 17 patients. The total number of identified contacts across all patients was 64, with 58 localized inside the resected area. Subsequent quantitative analysis showed strong correlation between maximum frequency of fast activity and suppression inside the resection but not outside. We did not observe significant discrimination power using only the maximum frequency or the timing of fast activity to differentiate contacts either between resected and non-resected regions or between contacts identified as epileptogenic versus non-epileptogenic. Instead of identifying a single frequency or a single timing trait, we observed the more complex pattern described above that distinguishes the epileptogenic zone. This pattern encompasses interictal to ictal transition and may extend until seizure end. Its time-frequency characteristics can be explained in light of recent models emphasizing the role of fast inhibitory interneurons acting on pyramidal cells as a prominent mechanism in seizure triggering. The pattern clearly differentiates the epileptogenic zone from areas of propagation and, as such, represents an epileptogenic zone 'fingerprint'.awx306media15687076823001.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Epilepsia/patología , Epilepsia/fisiopatología , Adolescente , Adulto , Anciano , Preescolar , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
15.
Cereb Cortex ; 28(12): 4336-4347, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126181

RESUMEN

Several studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6. We compared these children with children of the same socio-economic background but either involved in sports training or not involved in any systematic after school training. We established at the onset that there were no pre-existing structural differences among the groups. Two years later we observed that children in the music group showed (1) a different rate of cortical thickness maturation between the right and left posterior superior temporal gyrus, and (2) higher fractional anisotropy in the corpus callosum, specifically in the crossing pathways connecting superior frontal, sensory, and motor segments. We conclude that music training induces macro and microstructural brain changes in school-age children, and that those changes are not attributable to pre-existing biological traits.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Música , Práctica Psicológica , Estimulación Acústica , Mapeo Encefálico , Niño , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino
16.
Neuroimage ; 172: 740-752, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29428580

RESUMEN

We describe BrainSync, an orthogonal transform that allows direct comparison of resting fMRI (rfMRI) time-series across subjects. For this purpose, we exploit the geometry of the rfMRI signal space to propose a novel orthogonal transformation that synchronizes rfMRI time-series across sessions and subjects. When synchronized, rfMRI signals become approximately equal at homologous locations across subjects. The method is based on the observation that rfMRI data exhibit similar connectivity patterns across subjects, as reflected in the pairwise correlations between different brain regions. We show that if the data for two subjects have similar correlation patterns then their time courses can be approximately synchronized by an orthogonal transformation. This transform is unique, invertible, efficient to compute, and preserves the connectivity structure of the original data for all subjects. Analogously to image registration, where we spatially align structural brain images, this temporal synchronization of brain signals across a population, or within-subject across sessions, facilitates cross-sectional and longitudinal studies of rfMRI data. The utility of the BrainSync transform is illustrated through demonstrative simulations and applications including quantification of rfMRI variability across subjects and sessions, cortical functional parcellation across a population, timing recovery in task fMRI data, comparison of task and resting state data, and an application to complex naturalistic stimuli for annotation prediction.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Descanso/fisiología
17.
Brain ; 140(7): 1872-1884, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28582473

RESUMEN

Subtraction ictal and interictal single photon emission computed tomography can demonstrate complex ictal perfusion patterns. Regions with ictal hyperperfusion are suggested to reflect seizure onset and propagation pathways. The significance of ictal hypoperfusion is not well understood. The aim of this study was to verify whether ictal perfusion changes, both hyper- and hypoperfusion, correspond to electrically connected brain networks. A total of 36 subtraction ictal and interictal perfusion studies were analysed in 31 consecutive medically refractory focal epilepsy patients, evaluated by stereo-electroencephalography that demonstrated a single focal onset. Cortico-cortical evoked potential studies were performed after repetitive electrical stimulation of the ictal onset zone. Evoked responses at electrode contacts outside the stimulation site were used as a measure of connectivity. The evoked responses at these electrodes were compared to ictal perfusion values noted at these locations. In 67% of studies, evoked responses were significantly larger in hyperperfused compared to baseline-perfused areas. The majority of hyperperfused contacts also had significantly increased evoked responses relative to pre-stimulus electroencephalogram. In contrast, baseline-perfused and hypoperfused contacts mainly demonstrated non-significant evoked responses. Finally, positive significant correlations (P < 0.05) were found between perfusion scores and evoked responses in 61% of studies. When the stimulated ictal onset area was hyperperfused, 82% of studies demonstrated positive significant correlations. Following stimulation of hyperperfused areas outside seizure onset, positive significant correlations between perfusion changes and evoked responses could be seen, suggesting bidirectional connectivity. We conclude that strong connectivity was demonstrated between the ictal onset zone and hyperperfused regions, while connectivity was weaker in the direction of baseline-perfused or hypoperfused areas. In trying to understand a patient's epilepsy, one should consider the contribution of all hyperperfused regions, as these are likely not random, but represent an electrically connected epileptic network.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia Refractaria/fisiopatología , Potenciales Evocados/fisiología , Adolescente , Adulto , Anciano , Corteza Cerebral/fisiología , Niño , Estimulación Eléctrica , Electroencefalografía , Femenino , Neuroimagen Funcional , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada de Emisión de Fotón Único , Adulto Joven
18.
Neuroimage ; 115: 269-80, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25827811

RESUMEN

Diffusion MRI provides quantitative information about microstructural properties which can be useful in neuroimaging studies of the human brain. Echo planar imaging (EPI) sequences, which are frequently used for acquisition of diffusion images, are sensitive to inhomogeneities in the primary magnetic (B0) field that cause localized distortions in the reconstructed images. We describe and evaluate a new method for correction of susceptibility-induced distortion in diffusion images in the absence of an accurate B0 fieldmap. In our method, the distortion field is estimated using a constrained non-rigid registration between an undistorted T1-weighted anatomical image and one of the distorted EPI images from diffusion acquisition. Our registration framework is based on a new approach, INVERSION (Inverse contrast Normalization for VERy Simple registratION), which exploits the inverted contrast relationship between T1- and T2-weighted brain images to define a simple and robust similarity measure. We also describe how INVERSION can be used for rigid alignment of diffusion images and T1-weighted anatomical images. Our approach is evaluated with multiple in vivo datasets acquired with different acquisition parameters. Compared to other methods, INVERSION shows robust and consistent performance in rigid registration and shows improved alignment of diffusion and anatomical images relative to normalized mutual information for non-rigid distortion correction.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/estadística & datos numéricos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Artefactos , Imagen Eco-Planar , Humanos , Distribución Normal , Reproducibilidad de los Resultados
20.
J Neurolinguistics ; 36: 35-55, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27695193

RESUMEN

In the present study, we explored how Age of Acquisition (AoA) of L2 affected brain structures in bilingual individuals. Thirty-six native English speakers who were bilingual were scanned with high resolution MRI. After MRI signal intensity inhomogeneity correction, we applied both voxel-based morphometry (VBM) and surface-based morphometry (SBM) approaches to the data. VBM analysis was performed using FSL's standard VBM processing pipeline. For the SBM analysis, we utilized a semi-automated sulci delineation procedure, registered the brains to an atlas, and extracted measures of twenty four pre-selected regions of interest. We addressed three questions: (1) Which areas are more susceptible to differences in AoA? (2) How do AoA, proficiency and current level of exposure work together in predicting structural differences in the brain? And (3) What is the direction of the effect of AoA on regional volumetric and surface measures? Both VBM and SBM results suggested that earlier second language exposure was associated with larger volumes in the right parietal cortex. Consistently, SBM showed that the cortical area of the right superior parietal lobule increased as AoA decreased. In contrast, in the right pars orbitalis of the inferior frontal gyrus, AoA, proficiency, and current level of exposure are equally important in accounting for the structural differences. We interpret our results in terms of current theory and research on the effects of L2 learning on brain structures and functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA