Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011945, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252628

RESUMEN

The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oryza/microbiología , Magnaporthe/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
2.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566027

RESUMEN

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Asunto(s)
Transferasas Alquil y Aril , Coffea , Liasas Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Semillas , Perfilación de la Expresión Génica
3.
J Sci Food Agric ; 102(13): 5768-5777, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35398897

RESUMEN

BACKGROUND: Citrus juices can be cold-concentrated by crossflow microfiltration (CMF) in order to obtain functional foods enriched in carotenoids, flavonoids and pectins. The work aimed to characterize the organoleptic quality of this type of micronutrient-dense foods through their aroma profile and sensory analysis. Two citrus concentrates with and without a diafiltration step were compared. RESULTS: Both citrus products were very different, linked to aroma compound, sugar and organic acid contents. Due to its sugar/acidity balance and its better aromatic profile responsible for the citrus-floral flavour, the concentrate without diafiltration was preferred by the sensory panel. Thanks to a simple transfer model, we showed that retention of volatiles clearly varied from one aroma compound to another. The terpene hydrocarbons were the most retained by the membrane during CMF, probably because they were strongly associated with insoluble solids by adsorption. CONCLUSION: Even though the process modified their organoleptic profiles, both citrus-based products were well rated and can be consumed directly as pleasant functional drinks. © 2022 Society of Chemical Industry.


Asunto(s)
Citrus , Compuestos Orgánicos Volátiles , Citrus/química , Jugos de Frutas y Vegetales/análisis , Alimentos Funcionales/análisis , Odorantes/análisis , Azúcares , Compuestos Orgánicos Volátiles/química
4.
J Food Sci Technol ; 59(11): 4466-4478, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36193455

RESUMEN

Cocoa pod-opening delay and bean fermentation promote the organoleptic quality of chocolate. The present research investigated the changes in the volatile fingerprint of cocoa harvested at a traditional plantation. Cocoa beans extracted from 2-days pod-opening delay were simultaneously fermented for 5 days using container and then sun-dried to 7-8% moisture content at five different locations: Akoupé, San Pedro, Soubré, Djekanou and Daloa. The aromatic analysis were done on cocoa using the HS-SPME-GC/MS technique. Professional panelists evaluated the sensory perceptions of the chocolate. The results shows that cocoa fermented in both Daloa and Soubré regions were differentiated by 2,3-butanediol while those processed in other regions presented highest acetoin content. However, fermented cocoa from Soubré region exhibited most amount of 2,3-butanediol, diacetate A whereas 2,3,5,6-tetramethylpyrazine differentiated those from Daloa region. Sensory properties of chocolate were not linked to the aromatic compound precursors profile of beans. The fermentation performed in San Pédro region promote both the generation of more desirable aromatic compounds of cocoa and sensory attributes of the finished chocolate. The fermentation location generates a greater differentiation of the volatile fingerprint of cocoa and the sensory perceptions of the finished chocolate.

5.
Environ Microbiol ; 22(12): 5189-5206, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32755016

RESUMEN

Esca, a major grapevine trunk disease in old grapevines, is associated with the colonization of woody tissues by a broad range of plant pathogenic fungi. To identify which fungal and bacterial species are involved in the onset of this disease, we analysed the microbiota from woody tissues of young (10-year-old) grapevines at an early stage of esca. Using meta-barcoding, 515 fungal and 403 bacterial operational taxonomic units (OTUs) were identified in woody tissues. In situ hybridization showed that these fungi and bacteria co-inhabited in grapevine woody tissues. In non-necrotic woody tissues, fungal and bacterial microbiota varied according to organs and seasons but not diseased plant status. Phaeomoniella chlamydospora, involved in the Grapevine trunk disease, was the most abundant species in non-necrotic tissues from healthy plants, suggesting a possible non-pathogenic endophytic behaviour. Most diseased plants (70%) displayed cordons, with their central white-rot necrosis colonized essentially by two plant pathogenic fungi (Fomitiporia mediterranea: 60%-90% and P. chlamydospora: 5%-15%) and by a few bacterial taxa (Sphingomonas spp. and Mycobacterium spp.). The occurrence of a specific association of fungal and bacterial species in cordons from young grapevines expressing esca-foliar symptoms strongly suggests that that microbiota is involved in the onset of this complex disease.


Asunto(s)
Microbiota , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Madera/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Estructuras de las Plantas/microbiología , Estaciones del Año
6.
Environ Microbiol ; 21(8): 2724-2739, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887618

RESUMEN

Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with ß-1,4, ß-1,3 and mixed ß-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.


Asunto(s)
Hongos/enzimología , Glicósido Hidrolasas/metabolismo , Oomicetos/enzimología , Plantas/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Pared Celular/metabolismo , Hongos/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/genética , Oomicetos/genética , Simbiosis
7.
New Phytol ; 223(2): 590-596, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30851201

RESUMEN

Molecular plant-fungal interaction studies have mainly focused on small secreted protein effectors. However, accumulating evidence shows that numerous fungal secondary metabolites are produced at all stages of plant colonization, especially during early asymptomatic/biotrophic phases. The discovery of fungal small RNAs targeting plant transcripts has expanded the fungal repertoire of nonproteinaceous effectors even further. The challenge now is to develop specific functional methods to fully understand the biological roles of these effectors. Studies on fungal extracellular vesicles are also needed because they could be the universal carriers of all kinds of fungal effectors. With this review, we aim to stimulate the nonproteinaceous effector research field to move from descriptive to functional studies, which should bring a paradigm shift in plant-fungal interactions.


Asunto(s)
Hongos/fisiología , Interacciones Huésped-Patógeno , Plantas/microbiología , Regulación Fúngica de la Expresión Génica , Células Vegetales/metabolismo , Plantas/genética , Metabolismo Secundario
8.
J Food Sci Technol ; 55(5): 1859-1869, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29666539

RESUMEN

This work describes the formulation of a functional yogurt-like product based on fermented maize with added phytosterols and its oxidative stability during cold storage. The technological challenge was to stabilize 3.5% esterified phytosterols (between 2 and 3 g of free sterols) in a low-fat emulsion and to preserve the obtained product throughout processing and storage. The natural bioactive compounds: lutein, zeaxanthin, ß-cryptoxanthin, ß-carotene and γ-tocopherol were detected in the yogurt, and remained stable during 12 days of refrigeration. Higher content of C18:1 n-9 and C18:3 n-3 (six and ninefold, respectively) were obtained in samples with phytosterols. This was desirable from a nutritional point of view, but at the same time it induced lipid oxidation that was 1.4-fold higher in the product with phytosterols than in the controls. The use of a multivariate approach served to find descriptors which were related to treatments, and to explain their behavior over time.

9.
BMC Biol ; 14(1): 84, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27716181

RESUMEN

BACKGROUND: In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. RESULTS: Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. CONCLUSION: Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.


Asunto(s)
Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Bangladesh , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Triticum/genética
11.
Nature ; 464(7291): 1033-8, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20348908

RESUMEN

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.


Asunto(s)
Ascomicetos/genética , Evolución Molecular , Genoma Fúngico/genética , Simbiosis/genética , Carbohidratos , Elementos Transponibles de ADN/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Genes Fúngicos/genética , Genómica , Haploidia , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Azufre/metabolismo
12.
BMC Genomics ; 16: 141, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25766680

RESUMEN

BACKGROUND: Transposable Elements (TEs) are key components that shape the organization and evolution of genomes. Fungi have developed defense mechanisms against TE invasion such as RIP (Repeat-Induced Point mutation), MIP (Methylation Induced Premeiotically) and Quelling (RNA interference). RIP inactivates repeated sequences by promoting Cytosine to Thymine mutations, whereas MIP only methylates TEs at C residues. Both mechanisms require specific cytosine DNA Methyltransferases (RID1/Masc1) of the Dnmt1 superfamily. RESULTS: We annotated TE sequences from 10 fungal genomes with different TE content (1-70%). We then used these TE sequences to carry out a genome-wide analysis of C to T mutations biases. Genomes from either Ascomycota or Basidiomycota that were massively invaded by TEs (Blumeria, Melampsora, Puccinia) were characterized by a low frequency of C to T mutation bias (10-20%), whereas other genomes displayed intermediate to high frequencies (25-75%). We identified several dinucleotide signatures at these C to T mutation sites (CpA, CpT, and CpG). Phylogenomic analysis of fungal Dnmt1 MTases revealed a previously unreported association between these dinucleotide signatures and the presence/absence of sub-classes of Dnmt1. CONCLUSIONS: We identified fungal genomes containing large numbers of TEs with many C to T mutations associated with species-specific dinucleotide signatures. This bias suggests that a basic defense mechanism against TE invasion similar to RIP is widespread in fungi, although the efficiency and specificity of this mechanism differs between species. Our analysis revealed that dinucleotide signatures are associated with the presence/absence of specific Dnmt1 subfamilies. In particular, an RID1-dependent RIP mechanism was found only in Ascomycota.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Fúngico , Mutación/genética , Ascomicetos/genética , Basidiomycota/genética , Anotación de Secuencia Molecular , Especificidad de la Especie
13.
Fungal Genet Biol ; 79: 174-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092804

RESUMEN

Studying essential genes in haploid fungi requires specific tools. Conditional promoter replacement (CPR) is an efficient method for testing gene essentiality. However, this tool requires promoters that can be strongly down-regulated. To this end, we tested the nitrate reductase promoters of Magnaporthe oryzae (pMoNIA1) and Zymoseptoria tritici (pZtNIA1) for their conditional expression in Z. tritici. Expression of EGFP driven by pMoNIA1 or pZtNIA1 was induced on nitrate and down-regulated on glutamate (10-fold less than nitrate). Levels of differential expression were similar for both promoters, demonstrating that the Z. tritici nitrogen regulatory network functions with a heterologous promoter similarly to a native promoter. To establish CPR, the promoter of Z. tritici BGS1, encoding a ß-1,3-glucan synthase, was replaced by pZtNIA1 using targeted sequence replacement. Growth of pZtNIA1::BGS1 CPR transformants was strongly reduced in conditions repressing pZtNIA1, while their growth was similar to wild type in conditions inducing pZtNIA1. This differential phenotype demonstrates that BGS1 is important for growth in Z. tritici. In addition, in inducing conditions, pZtNIA1::BGS1 CPR transformants were hyper-sensitive to Calcofluor white, a cell wall disorganizing agent. Nitrate reductase promoters are therefore suitable for conditional promoter replacement in Z. tritici. This tool is a major step toward identifying novel fungicide targets.


Asunto(s)
Fusión Artificial Génica , Ascomicetos/genética , Expresión Génica , Nitrato-Reductasa/genética , Regiones Promotoras Genéticas , Ascomicetos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Nitratos/metabolismo , Recombinación Genética
14.
Plant J ; 74(1): 1-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23279638

RESUMEN

Effector proteins are key elements in plant-fungal interactions. The rice blast fungus Magnaporthe oryzae secretes numerous effectors that are suspected to be translocated inside plant cells. However, their cellular targets and the mechanisms of translocation are still unknown. Here, we have identified the open reading frame (ORF3) corresponding to the M. oryzae avirulence gene AVR1-CO39 that interacts with the rice resistance gene Pi-CO39 and encodes a small secreted protein without homology to other proteins. We demonstrate that AVR1-CO39 is specifically expressed and secreted at the plant-fungal interface during the biotrophic phase of infection. Live-cell imaging with M. oryzae transformants expressing a translational fusion between AVR1-CO39 and the monomeric red fluorescent protein (mRFP) indicated that AVR1-CO39 is translocated into the cytoplasm of infected rice cells. Transient expression of an AVR1-CO39 isoform without a signal peptide in rice protoplasts triggers a Pi-CO39-specific hypersensitive response, suggesting that recognition of AVR1-CO39 by the Pi-CO39 gene product occurs in the cytoplasm of rice cells. The native AVR1-CO39 protein enters the secretory pathway of rice protoplasts as demonstrated by the ER localization of AVR1-CO39:mRFP:HDEL translational fusions, and is correctly processed as shown by Western blotting. However, this secreted AVR1-CO39 isoform triggers a Pi-CO39-specific hypersensitive response and accumulates inside rice protoplasts as shown by Western blotting and localization of AVR1-CO39:mRFP translational fusions. This indicates that AVR1-CO39 is secreted by rice protoplasts and re-enters into the cytoplasm by unknown mechanisms, suggesting that translocation of AVR1-CO39 into rice cells occurs independently of fungal factors.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Transporte de Proteínas , Secuencia de Aminoácidos , Secuencia de Bases , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína , Protoplastos/metabolismo
15.
Fungal Genet Biol ; 70: 42-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25011008

RESUMEN

Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.


Asunto(s)
Cromosomas Fúngicos , Hongos/genética , Hongos/patogenicidad , Genoma Fúngico , Hongos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Metabolismo Secundario , Virulencia
16.
J Agric Food Chem ; 72(28): 15788-15800, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38976795

RESUMEN

An experimental setup was devised to investigate the permeability of cocoa bean seed coat and pulp to key volatile compounds during fermentation. Four labeled compounds (ethyl acetate-d3, ethyl octanoate-d15, 2-phenylethanol-d5, linalool-d5) and 2 unlabeled (beta-damascenone, delta-decalactone) were chosen for the investigation. The beans (cotyledons), depulped beans, or pulped beans were immersed separately in a concentrated solution of these volatile compounds at 36 or 46 °C for durations ranging from 3 to 120 h. The imbibed beans were dissected, and the cotyledons were analyzed by SPME-GC/MS. The diffusion of volatile compounds from the external solution to the seed was categorized into three groups: (1) not diffusible (ethyl octanoate-d15); (2) semidiffusible (ethyl acetate); and (3) totally diffusible (2-phenylethanol-d5, linalool-d5, beta-damascenone, delta-decalactone). The impact of the yeast on volatile compound diffusion was also investigated by immerging the pulped beans into the same concentrated solution with a yeast starter. Results highlighted the positive role of yeast in the diffusion of volatile compounds. The starter positively contributed to volatile compound diffusion after a transition phase occurring at approximately 48 h of fermentation, enriching the cocoa beans with key aromatic volatile compounds.


Asunto(s)
Cacao , Fermentación , Semillas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Cacao/metabolismo , Cacao/química , Semillas/química , Semillas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Difusión
17.
Mol Plant Pathol ; 25(4): e13449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619508

RESUMEN

Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY: Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE: P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS: P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.


Asunto(s)
Ascomicetos , Hordeum , Ascomicetos/genética , Productos Agrícolas , Triticum
18.
Fungal Genet Biol ; 57: 76-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23810898

RESUMEN

Magnaporthe oryzae is a fungal plant pathogen of many grasses including rice. Since arabinoxylan is one of the major components of the plant cell wall of grasses, M. oryzae is likely to degrade this polysaccharide for supporting its growth in infected leaves. D-Xylose is released from arabinoxylan by fungal depolymerising enzymes and catabolized through the pentose pathway. The expression of genes involved in these pathways is under control of the transcriptional activator XlnR/Xlr1, conserved among filamentous ascomycetes. In this study, we identified M. oryzae genes involved in the pentose catabolic pathway (PCP) and their function during infection, including the XlnR homolog, XLR1, through the phenotypic analysis of targeted null mutants. Growth of the Δxlr1 strain was reduced on D-xylose and xylan, but unaffected on L-arabinose and arabinan. A strong reduction of PCP gene expression was observed in the Δxlr1 strain on D-xylose and L-arabinose. However, there was no significant difference in xylanolytic and cellulolytic enzyme activities between the Δxlr1 mutant and the reference strain. These data demonstrate that XLR1 encodes the transcriptional activator of the PCP in M. oryzae, but does not appear to play a role in the regulation of the (hemi-) cellulolytic system in this fungus. This indicates only partial similarity in function between Xlr1 and A. niger XlnR. The deletion mutant of D-xylulose kinase encoding gene (XKI1) is clearly unable to grow on either D-xylose or L-arabinose and showed reduced growth on xylitol, L-arabitol and xylan. Δxki1 displayed an interesting molecular phenotype as it over-expressed other PCP genes as well as genes encoding (hemi-) cellulolytic enzymes. However, neither Δxlr1 nor Δxki1 showed significant differences in their pathogeny on rice and barley compared to the wild type, suggesting that D-xylose catabolism is not required for fungal growth in infected leaves.


Asunto(s)
Proteínas Fúngicas/genética , Magnaporthe/metabolismo , Redes y Vías Metabólicas , Pentosas/metabolismo , Arabinosa/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transcripción Genética , Xilanos/metabolismo , Xilosa/metabolismo
19.
Plant Cell ; 22(7): 2495-508, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20675574

RESUMEN

Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin beta-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex. The tig1 deletion mutant was nonpathogenic and defective in conidiogenesis. It had an increased sensitivity to oxidative stress and failed to develop invasive hyphae in plant cells. Using affinity purification and coimmunoprecipitation assays, we identified several Tig1-associated proteins, including two HDACs that are homologous to components of the yeast Set3 complex. Functional analyses revealed that TIG1, SET3, SNT1, and HOS2 were core components of the Tig1 complex in M. oryzae. The set3, snt1, and hos2 deletion mutants displayed similar defects as those observed in the tig1 mutant, but deletion of HST1 or HOS4 had no detectable phenotypes. Deletion of any of these core components of the Tig1 complex resulted in a significant reduction in HDAC activities. Our results showed that TIG1, like its putative yeast and mammalian orthologs, is one component of a conserved HDAC complex that is required for infectious growth and conidiogenesis in M. oryzae and highlighted that chromatin modification is an essential regulatory mechanism during plant infection.


Asunto(s)
Histona Desacetilasas/metabolismo , Magnaporthe/crecimiento & desarrollo , Oryza/microbiología , Cromatografía de Afinidad , Genes Fúngicos , Peróxido de Hidrógeno/metabolismo , Magnaporthe/enzimología , Magnaporthe/genética , Magnaporthe/patogenicidad , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Virulencia
20.
Sci Rep ; 13(1): 1417, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697464

RESUMEN

We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA. IterHMMBuild allows the iterative construction of Hidden Markov Model (HMM) profiles for conserved domains of selected protein sequences, while ProSeCDA scans a proteome of interest against an HMM profile database, and annotates identified proteins using user-defined rules. CusProSe was successfully used to identify, in fungal genomes, genes encoding key enzyme families involved in secondary metabolism, such as polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), hybrid PKS-NRPS and dimethylallyl tryptophan synthases (DMATS), as well as to characterize distinct terpene synthases (TS) sub-families. The highly configurable characteristics of this application makes it a generic tool, which allows the user to refine the function of predicted proteins, to extend detection to new enzymes families, and may also be applied to biological systems other than fungi and to other proteins than those involved in secondary metabolism.


Asunto(s)
Hongos , Anotación de Secuencia Molecular , Metabolismo Secundario , Programas Informáticos , Secuencia de Aminoácidos , Anotación de Secuencia Molecular/métodos , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Metabolismo Secundario/genética , Hongos/enzimología , Hongos/genética , Triptófano Sintasa/genética , Secuencia Conservada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA