Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Physiology (Bethesda) ; 36(6): 335-349, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704854

RESUMEN

Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.


Asunto(s)
Copépodos , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Copépodos/genética , Humanos , Salinidad , Selección Genética
2.
Mol Ecol ; 29(24): 4835-4856, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047351

RESUMEN

Saline migrants into freshwater habitats constitute among the most destructive invaders in aquatic ecosystems throughout the globe. However, the evolutionary and physiological mechanisms underlying such habitat transitions remain poorly understood. To explore the mechanisms of freshwater adaptation and distinguish between adaptive (evolutionary) and acclimatory (plastic) responses to salinity change, we examined genome-wide patterns of gene expression between ancestral saline and derived freshwater populations of the Eurytemora affinis species complex, reared under two different common-garden conditions (0 versus 15 PSU). We found that evolutionary shifts in gene expression (between saline and freshwater inbred lines) showed far greater changes and were more widespread than acclimatory responses to salinity (0 versus 15 PSU). Most notably, 30-40 genes showing evolutionary shifts in gene expression across the salinity boundary were associated with ion transport function, with inorganic cation transmembrane transport forming the largest Gene Ontology category. Of particular interest was the sodium transporter, the Na+ /H+ antiporter (NHA) gene family, which was discovered in animals relatively recently. Thirty key ion regulatory genes, such as NHA paralogue #7, demonstrated concordant evolutionary and plastic shifts in gene expression, suggesting the evolution of ion transporter function and plasticity during rapid invasions into novel salinities. Moreover, freshwater invasions were associated with the evolution of reduced plasticity in the freshwater population, again for the same key ion transporters, consistent with the predicted evolution of canalization following adaptation to stressful conditions. Our results have important implications for understanding evolutionary and physiological mechanisms of range expansions by some of the most widespread invaders in aquatic habitats.


Asunto(s)
Copépodos , Animales , Copépodos/genética , Ecosistema , Agua Dulce , Expresión Génica , Salinidad
3.
Mol Biol Evol ; 34(8): 1838-1862, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460028

RESUMEN

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.


Asunto(s)
Artrópodos/genética , Receptores Odorantes/genética , Animales , Células Quimiorreceptoras/fisiología , Copépodos/genética , Crustáceos/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Genoma/genética , Insectos/genética , Familia de Multigenes/genética , Filogenia
4.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29634279

RESUMEN

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Sedimentos Geológicos , América del Norte , Pruebas de Toxicidad
5.
iScience ; 27(7): 110278, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055944

RESUMEN

While many freshwater invaders originate from saline habitats, the physiological mechanisms involved are poorly understood. We investigated the evolution of ion transporter Na+/K+-ATPase (NKA) protein expression between ancestral saline and freshwater invading populations of the copepod Eurytemora carolleae (Atlantic clade of the E. affinis complex). We compared in situ NKA expression between populations under common-garden conditions at three salinities in the maxillary glands. We found the evolution of reduced NKA expression in the freshwater population under freshwater conditions and reduced plasticity (canalization) across salinities, relative to the saline population. Our results support the hypothesis that maxillary glands are involved in ion reabsorption from excretory fluids at low-salinity conditions in the saline population. However, mechanisms of freshwater adaptation, such as increased ion uptake from the environment, might reduce the need for ion reabsorption in the freshwater population. These patterns of ion transporter expression contribute insights into the evolution of ionic regulation during habitat change.

6.
iScience ; 26(10): 107851, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37752947

RESUMEN

With climate change, habitat salinity is shifting rapidly throughout the globe. In addition, many destructive freshwater invaders are recent immigrants from saline habitats. Recently, populations of the copepod Eurytemora affinis species complex have invaded freshwater habitats multiple times independently from saline estuaries on three continents. This review discusses features of this species complex that could enhance their evolutionary potential during rapid environmental change. Remarkably, across independent freshwater invasions, natural selection has repeatedly favored the same alleles far more than expected. This high degree of parallelism is surprising, given the expectation of nonparallel evolution for polygenic adaptation. Factors such as population structure and the genome architecture underlying critical traits under selection might help drive rapid adaptation and parallel evolution. Given the preponderance of saline-to-freshwater invasions and climate-induced salinity change, the principles found here could provide invaluable insights into mechanisms operating in other systems and the potential for adaptation in a changing planet.

7.
J Evol Biol ; 25(4): 625-33, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22296332

RESUMEN

Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of this study were to determine (1) whether invasions from saline to freshwater habitats were accompanied by evolutionary shifts in body fluid regulation (hemolymph osmolality) and (2) whether parallel shifts occurred during independent invasions. We measured hemolymph osmolality for ancestral saline and freshwater invading populations reared across a range of common-garden salinities (0.2-25 PSU). Our results revealed the evolution of increased hemolymph osmolality (by 16-31%) at lower salinities in freshwater populations of E. affinis relative to their saline ancestors. Moreover, we observed the same evolutionary shifts across two independent freshwater invasions. Such increases in hemolymph osmolality are consistent with evidence of increased ion uptake in freshwater populations at low salinity, found in a previous study, and are likely to entail increased energetic costs upon invading freshwater habitats. Our findings are consistent with the evolution of increased physiological regulation accompanying transitions into stressful environments.


Asunto(s)
Copépodos/fisiología , Animales , Evolución Biológica , Líquidos Corporales , Copépodos/genética , Ecosistema , Hemolinfa , Salinidad , Agua de Mar
8.
Front Physiol ; 13: 1006113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388090

RESUMEN

Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.

9.
Nat Commun ; 13(1): 4024, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821220

RESUMEN

The role of epistasis in driving adaptation has remained an unresolved problem dating back to the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could promote parallel evolution remains unexplored. To address this problem, we employ an Evolve and Resequence (E&R) experiment, using the copepod Eurytemora affinis, to elucidate the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity at high latitudes are a predicted consequence of global climate change. Based on time-resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic response across ten replicate selection lines, with 79.4% of selected alleles shared between lines by the tenth generation of natural selection. Using extensive computer simulations of our experiment conditions, we find that this polygenic parallelism is consistent with positive synergistic epistasis among alleles, far more so than other mechanisms tested. Our study provides experimental and theoretical support for a novel mechanism promoting repeatable polygenic adaptation, a phenomenon that may be common for selection on complex physiological traits.


Asunto(s)
Copépodos , Adaptación Fisiológica/genética , Alelos , Animales , Copépodos/genética , Epistasis Genética , Selección Genética
10.
Integr Comp Biol ; 62(2): 441-460, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35640911

RESUMEN

Climate change is causing habitat salinity to transform at unprecedented rates across the globe. While much of the research on climate change has focused on rapid shifts in temperature, far less attention has focused on the effects of changes in environmental salinity. Consequently, predictive studies on the physiological, evolutionary, and migratory responses of organisms and populations to the threats of salinity change are relatively lacking. This omission represents a major oversight, given that salinity is among the most important factors that define biogeographic boundaries in aquatic habitats. In this perspective, we briefly touch on responses of organisms and populations to rapid changes in salinity occurring on contemporary time scales. We then discuss factors that might confer resilience to certain taxa, enabling them to survive rapid salinity shifts. Next, we consider approaches for predicting how geographic distributions will shift in response to salinity change. Finally, we identify additional data that are needed to make better predictions in the future. Future studies on climate change should account for the multiple environmental factors that are rapidly changing, especially habitat salinity.


Asunto(s)
Cambio Climático , Salinidad , Animales , Evolución Biológica , Ecosistema , Temperatura
11.
Front Zool ; 8(1): 22, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21933388

RESUMEN

BACKGROUND: Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. DISCUSSION: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. SUMMARY: Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution.

12.
J Exp Biol ; 214(Pt 13): 2226-36, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21653816

RESUMEN

Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of such differences are unknown. We examined effects of shell morphology on locomotion for the three morphotypes on hard (typical of shallow habitats) and soft (characteristic of deep habitats) sedimentary substrates. We quantified morphology using the polar moment of inertia, a parameter used in calculating kinetic energy that describes shell area distribution and resistance to rotation. We quantified mussel locomotion by determining the ratio of rotational (K(rot)) to translational kinetic energy (K(trans)). On hard substrate, K(rot):K(trans) of deep quagga mussels was fourfold greater than for the other morphotypes, indicating greater energy expenditure in rotation relative to translation. On soft substrate, K(rot):K(trans) of deep quagga mussels was approximately one-third of that on hard substrate, indicating lower energy expenditure in rotation on soft substrate. Overall, our study demonstrates that shell morphology correlates with differences in locomotion (i.e. K(rot):K(trans)) among morphotypes. Although deep quagga mussels were similar to zebra and shallow quagga mussels in terms of energy expenditure on sedimentary substrate, their morphology was energetically maladaptive for linear movement on hard substrate. As quagga mussels can possess two distinct morphotypes (i.e. shallow and deep morphs), they might more effectively utilize a broader range of substrates than zebra mussels, potentially enhancing their ability to colonize a wider range of habitats.


Asunto(s)
Bivalvos/fisiología , Locomoción , Algoritmos , Estructuras Animales/anatomía & histología , Animales , Fenómenos Biomecánicos , Ecosistema , Agua Dulce , Great Lakes Region , Cinética , Modelos Biológicos , Modelos Estadísticos , Movimiento , Especificidad de la Especie
13.
J Exp Biol ; 213(Pt 15): 2602-9, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20639421

RESUMEN

The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Dreissena/anatomía & histología , Dreissena/crecimiento & desarrollo , Ecosistema , Agua Dulce , Animales , Peso Corporal , Great Lakes Region
14.
Nat Ecol Evol ; 4(8): 1084-1094, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572217

RESUMEN

The ability of populations to expand their geographical ranges, whether as invaders, agricultural strains or climate migrants, is currently one of the most serious global problems. However, fundamental mechanisms remain poorly understood regarding factors that enable certain populations, such as biological invaders, to rapidly transition to novel habitats. According to one hypothesis, environmental fluctuations in the native range could promote successful invasions by imposing balancing selection on key traits and maintaining the genetic variation that enables rapid adaptation in novel habitats. Here we test the genomic predictions of this hypothesis by performing whole-genome sequencing of multiple independent invasive freshwater and native saline populations of the copepod Eurytemora affinis complex. We found that invasive populations have repeatedly responded to selection through the parallel use of the same single-nucleotide polymorphisms and genomic loci, to a much greater degree than expected. These same loci were enriched for signatures of long-term balancing selection in the native ranges, with 15-47% of loci exhibiting significant signatures of balancing selection. The strong association between parallel evolution in the invaded range and balancing selection in the native range supports the hypothesis that fluctuating habitats can promote invasive success and that balancing selection might serve as a widespread and important mechanism that enables rapid adaptation in nature.


Asunto(s)
Copépodos , Aclimatación , Adaptación Fisiológica/genética , Animales , Copépodos/genética , Genoma , Genómica
15.
Genome Biol ; 21(1): 15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31969194

RESUMEN

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Asunto(s)
Artrópodos/genética , Evolución Molecular , Animales , Artrópodos/clasificación , Metilación de ADN , Especiación Genética , Variación Genética , Filogenia
16.
Evol Appl ; 10(8): 813-828, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29151873

RESUMEN

The BP Deepwater Horizon Oil Disaster was the most catastrophic offshore oil spill in U.S. history, yet we still have a poor understanding of how organisms could evolve in response to the toxic effects of crude oil. This study offers a rare analysis of how fitness-related traits could evolve rapidly in response to crude oil toxicity. We examined evolutionary responses of populations of the common copepod Eurytemora affinis residing in the Gulf of Mexico, by comparing crude oil tolerance of populations collected before versus after the Deepwater Horizon oil spill of 2010. In addition, we imposed laboratory selection for crude oil tolerance for ~8 generations, using an E. affinis population collected from before the oil spill. We found evolutionary increases in crude oil tolerance in the wild population following the oil spill, relative to the population collected before the oil spill. The post-oil spill population showed increased survival and rapid development time in the presence of crude oil. In contrast, evolutionary responses following laboratory selection were less clear; though, development time from metamorphosis to adult in the presence of crude oil did become more rapid after selection. We did find that the wild population, used in both experiments, harbored significant genetic variation in crude oil tolerance, upon which selection could act. Thus, our study indicated that crude oil tolerance could evolve, but perhaps not on the relatively short time scale of the laboratory selection experiment. This study contributes novel insights into evolutionary responses to crude oil, in directly examining fitness-related traits before and after an oil spill, and in observing evolutionary responses following laboratory selection.

17.
Evol Appl ; 9(1): 248-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27087851

RESUMEN

The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V-type H(+) ATPase, Na(+), K(+)-ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through 'beneficial reversal of dominance' in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High-food concentration increases low-salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.

18.
Physiol Biochem Zool ; 89(3): 233-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27153133

RESUMEN

The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of this study were to localize and quantify expression of ion transport enzymes V-type H(+)-ATPase (VHA) and Na(+)/K(+)-ATPase (NKA) in the swimming legs of E. affinis and determine the degree of involvement of each leg in ionic regulation. We confirmed the presence of two distinct types of ionocytes in the Crusalis organs. Both cell types expressed VHA and NKA, and in the freshwater population the location of VHA and NKA in ionocytes was, respectively, apical and basal. Quantification of in situ expression of NKA and VHA established the predominance of swimming leg pairs 3 and 4 in ion transport in both saline and freshwater populations. Increases in VHA expression in swimming legs 3 and 4 of the freshwater population (in fresh water) relative to the saline population (at 15 PSU) arose from an increase in the abundance of VHA per cell rather than an increase in the number of ionocytes. This result suggests a simple mechanism for increasing ion uptake in fresh water. In contrast, the decline in NKA expression in the freshwater population arose from a decrease in ionocyte area in legs 4, likely resulting from decreases in number or size of ionocytes containing NKA. Such results provide insights into mechanisms of ionic regulation for this species, with added insights into evolutionary mechanisms underlying physiological adaptation during habitat invasions.


Asunto(s)
Copépodos/enzimología , Extremidades/fisiología , Osmorregulación/fisiología , ATPasas de Translocación de Protón/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Copépodos/fisiología , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , ATPasas de Translocación de Protón/genética , Salinidad , ATPasa Intercambiadora de Sodio-Potasio/genética , Equilibrio Hidroelectrolítico
19.
Physiol Biochem Zool ; 76(3): 296-301, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12905115

RESUMEN

Invasive species are commonly thought to have broad tolerances that enable them to colonize new habitats, but this assumption has rarely been tested. In particular, the relative importance of acclimation (plasticity) and adaptation for invasion success are poorly understood. This study examined effects of short-term and developmental acclimation on adult salinity tolerance in the copepod Eurytemora affinis. This microcrustacean occurs in estuarine and salt marsh habitats but has invaded freshwater habitats within the past century. Effects of short-term acclimation were determined by comparing adult survival in response to acute versus gradual salinity change to low salinity (fresh water). Effects of developmental acclimation on adult tolerance were determined using a split-brood 4 x 2 factorial experimental design for one brackish-water population from Edgartown Great Pond, Massachusetts. Twenty full-sib clutches were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On reaching adulthood, clutches from three of the salinity treatments (no survivors at fresh) were split into low- (fresh) and high- (40 PSU) salinity stress treatments, at which survival was measured for 24 h. Short-term acclimation of adults did not appear to have a long-term affect on low-salinity tolerance, given that gradual transfers to fresh water enhanced survival relative to acute transfers in the short term (after 7 h) but not over a longer period of 8 d. Developmental acclimation had contrasting effects on low- versus high-salinity tolerance. Namely, rearing salinity had a significant effect on tolerance of high-salinity (40 PSU) stress but no significant effect on tolerance of low-salinity (freshwater) stress. In addition, there was a significant effect of clutch on survival under freshwater conditions, indicating a genetic component to low-salinity tolerance but no significant clutch effect in response to high salinity. While developmental acclimation might enhance survival at higher salinities, the minimal effect of acclimation and significant effect of clutch on low-salinity tolerance suggest the importance of natural selection during freshwater invasion events.


Asunto(s)
Aclimatación/fisiología , Copépodos/fisiología , Cloruro de Sodio/farmacología , Aclimatación/efectos de los fármacos , Migración Animal , Animales , Copépodos/crecimiento & desarrollo , Agua Dulce , Massachusetts , Agua de Mar , Selección Genética
20.
Physiol Biochem Zool ; 75(4): 335-44, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12324889

RESUMEN

This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act.


Asunto(s)
Adaptación Fisiológica , Copépodos/genética , Copépodos/fisiología , Agua Dulce/química , Agua Dulce/parasitología , Agua de Mar/química , Cloruro de Sodio/análisis , Aclimatación , Animales , Evolución Biológica , Copépodos/crecimiento & desarrollo , Variación Genética , Genotipo , Larva/genética , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Fenotipo , Agua de Mar/parasitología , Selección Genética , Tasa de Supervivencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA