Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(35): 8787-8792, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104375

RESUMEN

Wnt signaling is initiated by Wnt ligand binding to the extracellular ligand binding domain, called the cysteine-rich domain (CRD), of a Frizzled (Fzd) receptor. Norrin, an atypical Fzd ligand, specifically interacts with Fzd4 to activate ß-catenin-dependent canonical Wnt signaling. Much of the molecular basis that confers Norrin selectivity in binding to Fzd4 was revealed through the structural study of the Fzd4CRD-Norrin complex. However, how the ligand interaction, seemingly localized at the CRD, is transmitted across full-length Fzd4 to the cytoplasm remains largely unknown. Here, we show that a flexible linker domain, which connects the CRD to the transmembrane domain, plays an important role in Norrin signaling. The linker domain directly contributes to the high-affinity interaction between Fzd4 and Norrin as shown by ∼10-fold higher binding affinity of Fzd4CRD to Norrin in the presence of the linker. Swapping the Fzd4 linker with the Fzd5 linker resulted in the loss of Norrin signaling, suggesting the importance of the linker in ligand-specific cellular response. In addition, structural dynamics of Fzd4 associated with Norrin binding investigated by hydrogen/deuterium exchange MS revealed Norrin-induced conformational changes on the linker domain and the intracellular loop 3 (ICL3) region of Fzd4. Cell-based functional assays showed that linker deletion, L430A and L433A mutations at ICL3, and C-terminal tail truncation displayed reduced ß-catenin-dependent signaling activity, indicating the functional significance of these sites. Together, our results provide functional and biochemical dissection of Fzd4 in Norrin signaling.


Asunto(s)
Proteínas del Ojo/química , Receptores Frizzled/química , Proteínas del Tejido Nervioso/química , Vía de Señalización Wnt , Animales , Proteínas del Ojo/metabolismo , Receptores Frizzled/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
2.
J Comput Chem ; 40(27): 2413-2417, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173387

RESUMEN

Protein-protein docking methods are spotlighted for their roles in providing insights into protein-protein interactions in the absence of full structural information by experiment. GalaxyTongDock is an ab initio protein-protein docking web server that performs rigid-body docking just like ZDOCK but with improved energy parameters. The energy parameters were trained by iterative docking and parameter search so that more native-like structures are selected as top rankers. GalaxyTongDock performs asymmetric docking of two different proteins (GalaxyTongDock_A) and symmetric docking of homo-oligomeric proteins with Cn and Dn symmetries (GalaxyTongDock_C and GalaxyTongDock_D). Performance tests on an unbound docking benchmark set for asymmetric docking and a model docking benchmark set for symmetric docking showed that GalaxyTongDock is better or comparable to other state-of-the-art methods. Experimental and/or evolutionary information on binding interfaces can be easily incorporated by using block and interface options. GalaxyTongDock web server is freely available at http://galaxy.seoklab.org/tongdock. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas/química , Teoría Cuántica , Programas Informáticos
3.
Proteins ; 85(3): 399-407, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27770545

RESUMEN

Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Secuencia de Aminoácidos , Benchmarking , Sitios de Unión , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proyectos de Investigación , Programas Informáticos , Homología Estructural de Proteína
4.
Nucleic Acids Res ; 43(W1): W431-5, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25969449

RESUMEN

Protein-peptide interactions are involved in a wide range of biological processes and are attractive targets for therapeutic purposes because of their small interfaces. Therefore, effective protein-peptide docking techniques can provide the basis for potential therapeutic applications by enabling an atomic-level understanding of protein interactions. With the increasing number of protein-peptide structures deposited in the protein data bank, the prediction accuracy of protein-peptide docking can be enhanced by utilizing the information provided by the database. The GalaxyPepDock web server, which is freely accessible at http://galaxy.seoklab.org/pepdock, performs similarity-based docking by finding templates from the database of experimentally determined structures and building models using energy-based optimization that allows for structural flexibility. The server can therefore effectively model the structural differences between the template and target protein-peptide complexes. The performance of GalaxyPepDock is superior to those of the other currently available web servers when tested on the PeptiDB set and on recently released complex structures. When tested on the CAPRI target 67, GalaxyPepDock generates models that are more accurate than the best server models submitted during the CAPRI blind prediction experiment.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Péptidos/química , Conformación Proteica , Programas Informáticos , Sitios de Unión , Internet , Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo
5.
Proteins ; 84 Suppl 1: 323-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27122118

RESUMEN

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos , Algoritmos , Secuencias de Aminoácidos , Bacterias/química , Sitios de Unión , Biología Computacional/métodos , Humanos , Cooperación Internacional , Internet , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
6.
Proteins ; 82(4): 620-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24155158

RESUMEN

We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions-20 groups submitted a total of 195 models-were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or medium-quality docking models-a very good docking performance per se-only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes.


Asunto(s)
Colicinas/química , Mapeo de Interacción de Proteínas , Agua/química , Algoritmos , Biología Computacional , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica
7.
Bioinformatics ; 29(8): 1078-80, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23413437

RESUMEN

SUMMARY: A large number of proteins function as homo-oligomers; therefore, predicting homo-oligomeric structure of proteins is of primary importance for understanding protein function at the molecular level. Here, we introduce a web server for prediction of protein homo-oligomer structure. The server takes a protein monomer structure as input and predicts its homo-oligomer structure from oligomer templates selected based on sequence and tertiary/quaternary structure similarity. Using protein model structures as input, the server shows clear improvement over the best methods of CASP9 in predicting oligomeric structures from amino acid sequences. AVAILABILITY: http://galaxy.seoklab.org/gemini. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Multimerización de Proteína , Programas Informáticos , Internet , Proteínas/química , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
8.
Proteins ; 81(9): 1499-508, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23483653

RESUMEN

The nitrogen-related phosphoenolpyruvate phosphotransferase system (PTS(Ntr) ) is involved in controlling ammonia assimilation and nitrogen fixation. The additional role of PTS(Ntr) as a regulatory link between nitrogen and carbon utilization in Escherichia coli is assumed to be closely related to molecular functions of IIA(Ntr) in potassium homeostasis. We have determined the crystal structure of IIA(Ntr) from Burkholderia pseudomallei (BpIIA(Ntr) ), which is a causative agent of melioidosis. The crystal structure of dimeric BpIIA(Ntr) determined at 3.0 Å revealed that its active sites are mutually blocked. This dimeric state is stabilized by charge and weak hydrophobic interactions. Overall monomeric structure and the active site residues, Arg51 and His67, of BpIIA(Ntr) are well conserved with those of IIA(Ntr) enzymes from E. coli and Neisseria meningitides. Interestingly, His113 of BpIIA(Ntr) , which corresponds to a key residue in another phosphoryl group relay in the mannitol-specific enzyme EIIA family (EIIA(Mtl) ), is located away from the active site due to the loop connecting ß5 and α3. Combined with other differences in molecular surface properties, these structural signatures distinguish the IIA(Ntr) family from the EIIA(Mtl) family. Since, there is no gene for NPr in the chromosome of B. pseudomallei, modeling and docking studies of the BpIIA(Ntr) -BpHPr complex has been performed to support the proposal on the NPr-like activity of BpHPr. A potential dual role of BpHPr as a nonspecific phosphocarrier protein interacting with both sugar EIIAs and IIA(Ntr) in B. pseudomallei has been discussed.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/enzimología , Simulación del Acoplamiento Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Burkholderia pseudomallei/genética , Cristalografía por Rayos X , Datos de Secuencia Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Unión Proteica , Alineación de Secuencia
9.
Proteins ; 81(11): 1980-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23843247

RESUMEN

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Algoritmos , Mutación , Unión Proteica
10.
Nanomaterials (Basel) ; 9(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817521

RESUMEN

The short material lifetime of thermally activated delayed fluorescence (TADF) technology is a major obstacle to the development of economically feasible, highly efficient, and durable devices for commercial applications. TADF devices are also hampered by insufficient operational stability. In this paper, we report the design, synthesis, and evaluation of new TADF molecules possessing a sterically twisted skeleton by interlocking donor and acceptor moieties through a C-C bond. Compared to C-N-bond TADF molecules, such as CPT2, the C-C-bond TADF molecules showed a large dihedral angle increase by more than 30 times and a singlet-triplet energy-gap decrease to less than 0.22 eV because of the steric hindrance caused by the direct C-C bond connection. With the introduction of a dibenzofuran core structure, devices comprising BMK-T317 and BMK-T318 exhibited a magnificent display performance, especially their external quantum efficiencies, which were as high as 19.9% and 18.8%, respectively. Moreover, the efficiency roll-off of BMK-T318 improved significantly (26.7%). These results indicate that stability of the material can be expected through the reduction of their singlet-triplet splitting and the precise adjustment of dihedral angles between the donor-acceptor skeletons.

11.
Methods Mol Biol ; 1561: 37-47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28236232

RESUMEN

We introduce a web server called GalaxyPepDock that predicts protein-peptide interactions based on templates. With the continuously increasing size of the protein structure database, the probability of finding related proteins for templates is increasing. GalaxyPepDock takes a protein structure and a peptide sequence as input and returns protein-peptide complex structures as output. Templates for protein-peptide complex structures are selected from the structure database considering similarity to the target protein structure and to putative protein-peptide interactions as estimated by protein structure alignment and peptide sequence alignment. Complex structures are then built from the template structures by template-based modeling. By further structure refinement that performs energy-based optimization, structural aspects that are missing in the template structures or that are not compatible with the given protein and peptide are refined. During the refinement, flexibilities of both protein and peptide induced by binding are considered. The atomistic protein-peptide interactions predicted by GalaxyPepDock can offer important clues for designing new peptides with desired binding properties.


Asunto(s)
Bases de Datos de Proteínas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas/química , Navegador Web
12.
Sci Rep ; 6: 32153, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535582

RESUMEN

Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.


Asunto(s)
Proteínas/metabolismo , Programas Informáticos , Sitios de Unión , Integrasa de VIH/química , Integrasa de VIH/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química
13.
Methods Mol Biol ; 1414: 33-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27094284

RESUMEN

We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein complex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that may bind the input protein and generates complex structures of the protein with the predicted ligands from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a protein structure and a peptide sequence as input and predicts structures for the protein-peptide complex. Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein-ligand complexes evolutionarily related to the target. With the continuously increasing size of the protein structure database, the probability of finding related proteins in the database is increasing. The servers further relax the complex structures to refine the structural aspects that are missing in the available structures or that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock allows conformational change of the protein receptor induced by peptide binding. The atomistic interactions with ligands predicted by the GALAXY servers may offer important clues for designing new molecules or proteins with desired binding properties.


Asunto(s)
Bases de Datos de Proteínas , Internet , Péptidos/metabolismo , Proteínas/metabolismo , Sitios de Unión , Modelos Moleculares , Péptidos/química , Proteínas/química
14.
Structure ; 24(1): 70-79, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26671707

RESUMEN

CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/química , Streptococcus pyogenes/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Asociadas a CRISPR/metabolismo , Cristalografía por Rayos X , Endodesoxirribonucleasas/metabolismo , Datos de Secuencia Molecular , Unión Proteica
15.
Curr Opin Struct Biol ; 35: 24-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26295792

RESUMEN

A computational protein-protein docking method that predicts atomic details of protein-protein interactions from protein monomer structures is an invaluable tool for understanding the molecular mechanisms of protein interactions and for designing molecules that control such interactions. Compared to low-resolution docking, high-resolution docking explores the conformational space in atomic resolution to provide predictions with atomic details. This allows for applications to more challenging docking problems that involve conformational changes induced by binding. Recently, high-resolution methods have become more promising as additional information such as global shapes or residue contacts are now available from experiments or sequence/structure data. In this review article, we highlight developments in high-resolution docking made during the last decade, specifically regarding global optimization methods employed by the docking methods. We also discuss two major challenges in high-resolution docking: prediction of backbone flexibility and water-mediated interactions.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Humanos , Agua/metabolismo
16.
Protein Sci ; 23(7): 906-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723367

RESUMEN

Vaccinia virus (VACV) encodes many proteins that interfere with the host immune system. Vaccinia virus A46 protein specifically targets the BB-loop motif of TIR-domain-containing proteins to disrupt receptor:adaptor (e.g., TLR4:MAL and TLR4:TRAM) interactions of the toll-like receptor signaling. The crystal structure of A46 (75-227) determined at 2.58 Å resolution showed that A46 formed a homodimer and adopted a Bcl-2-like fold similar to other VACV proteins such as A52, B14, and K7. Our structure also revealed that VIPER (viral inhibitory peptide of TLR4) motif resides in the α1-helix and six residues of the VIPER region were exposed to surface for binding to target proteins. In vitro binding assays between wild type and six mutants A46 (75-227) and full-length MAL identified critical residues in the VIPER motif. Computational modeling of the A46:MAL complex structure showed that the VIPER region of A46 and AB loop of MAL protein formed a major binding interface. In summary, A46 is a homodimer with a Bcl-2-like fold and VIPER motif is believed to be involved in the interaction with MAL protein based on our binding assays.


Asunto(s)
Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Proteínas Virales/química , Secuencias de Aminoácidos , Humanos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor Toll-Like 4/metabolismo , Proteínas Virales/genética
17.
J Mol Biol ; 414(2): 289-302, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22001016

RESUMEN

The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations. A total of 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the nonpolar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were, on average, structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a nonbinder.


Asunto(s)
Modelos Moleculares , Proteínas/química , Sitios de Unión , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA