Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 52-56, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407680

RESUMEN

The orbital Hall effect1 refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies2,3 predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect4-7 in many transition metals. Despite the growing circumstantial evidence8-11, its direct detection remains elusive. Here we report the magneto-optical observation of the orbital Hall effect in the light metal titanium (Ti). The Kerr rotation by the orbital magnetic moment accumulated at Ti surfaces owing to the orbital Hall current is measured, and the result agrees with theoretical calculations semi-quantitatively and is supported by the orbital torque12 measurement in Ti-based magnetic heterostructures. This result confirms the orbital Hall effect and indicates that the orbital angular momentum is an important dynamic degree of freedom in solids. Moreover, this calls for renewed studies of the orbital effect on other degrees of freedom such as spin2,3,13,14, valley15,16, phonon17-19 and magnon20,21 dynamics.

2.
Nature ; 582(7810): 67-72, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494080

RESUMEN

Continental rifts are important sources of mantle carbon dioxide (CO2) emission into Earth's atmosphere1-3. Because deep carbon is stored for long periods in the lithospheric mantle4-6, rift CO2 flux depends on lithospheric processes that control melt and volatile transport1,3,7. The influence of compositional and thickness differences between Archaean and Proterozoic lithosphere on deep-carbon fluxes remains untested. Here we propose that displacement of carbon-enriched Tanzanian cratonic mantle concentrates deep carbon below parts of the East African Rift System. Sources and fluxes of CO2 and helium are examined over a 350-kilometre-long transect crossing the boundary between orogenic (Natron and Magadi basins) and cratonic (Balangida and Manyara basins) lithosphere from north to south. Areas of diffuse CO2 degassing exhibit increasing mantle CO2 flux and 3He/4He ratios as the rift transitions from Archaean (cratonic) to Proterozoic (orogenic) lithosphere. Active carbonatite magmatism also occurs near the craton edge. These data indicate that advection of the root of thick Archaean lithosphere laterally to the base of the much thinner adjacent Proterozoic lithosphere creates a zone of highly concentrated deep carbon. This mode of deep-carbon extraction may increase CO2 fluxes in some continental rifts, helping to control the production and location of carbonate-rich magmas.

3.
Nano Lett ; 24(20): 5968-5974, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38682941

RESUMEN

Recently, topological responses of magnons have emerged as a central theme in magnetism and spintronics. However, resulting Hall responses are typically weak and infrequent, since, according to present understanding, they arise from effective spin-orbit couplings, which are weaker compared to the exchange energy. Here, by investigating transport properties of magnon orbital moments, we predict that the magnon orbital Nernst effect is an intrinsic characteristic of the honeycomb antiferromagnet and therefore, it manifests even in the absence of spin-orbit coupling. For the electric detection, we propose an experimental scheme based on the magnetoelectric effect. Our results break the conventional wisdom that the Hall transport of magnons requires spin-orbit coupling by predicting the magnon orbital Nernst effect in a system without it, which leads us to envision that our work initiates the intensive search for various magnon Hall effects in generic magnetic systems with no reliance on spin-orbit coupling.

4.
Nano Lett ; 24(22): 6459-6464, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780051

RESUMEN

The generation of current-induced torques through the spin Hall effect in Pt has been key to the development of spintronics. In prototypical ferromagnetic-metal/Pt devices, the characteristic length of the torque generation is known to be about 1 nm due to the short spin diffusion length of Pt. Here, we report the observation of a long-range current-induced torque in Ni/Pt bilayers. We demonstrate that when Ni is used as the ferromagnetic layer, the torque efficiency increases with the Pt thickness, even when it exceeds 10 nm. The torque efficiency is also enhanced by increasing the Ni thickness, providing evidence that the observed torque cannot be attributed to the spin Hall effect in the Pt layer. These findings, coupled with our semirealistic tight-binding calculations of the current-induced torque, suggest the possibility that the observed long-range torque is dominated by the orbital Hall effect in the Pt layer.

5.
J Clin Microbiol ; : e0052424, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934589

RESUMEN

This study compared the performance of two commercial molecular assays, the STANDARD M10 Clostridioides difficile assay (M10) and the Xpert C. difficile assay (Xpert), for detecting toxigenic C. difficile in stool specimens. A total of 487 consecutive stool specimens submitted for routine C. difficile testing between June and November 2023 were included. Following routine testing using C. DIFF QUIK CHEK COMPLETE (QCC), M10 and Xpert were tested in parallel, alongside toxigenic culture (reference standard). Additionally, two-step algorithms, using QCC on the first step and either M10 or Xpert on the second step, were assessed. Both M10 and Xpert demonstrated a sensitivity and negative predictive value (NPV) of 100%. M10 exhibited significantly higher specificity and positive predictive value (PPV; 91.9% and 64.2%, respectively) than Xpert (90.3% and 59.8%, respectively). Both two-step algorithms showed a sensitivity and NPV of 98.4% and 99.8%, respectively. The specificity and PPV of the two-step algorithm using M10 (95.2% and 75.0%, respectively) were slightly higher than those of the one using Xpert (94.8% and 73.2%, respectively), without statistical significance. Receiver operating characteristic curve analysis, assessing the predictive ability of cycle threshold (Ct) values for the detection of free toxin, exhibited an area under the curve of 0.825 for M10 and 0.843 for Xpert. This indicates the utility of Ct values as predictors for the detection of free toxin in both assays. In conclusion, M10 proves to be an effective diagnostic tool with performance comparable to Xpert, whether utilized independently or as part of a two-step algorithm.

6.
Drug Metab Dispos ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302428

RESUMEN

The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is the organ massively exposed to gut microbial metabolites, and it serves as the nexus, maintaining healthy interactions between the gut microbiota and host. At the same time, the liver is the primary target of harmful gut microbial metabolites. This review provides an up-to-date list of gut microbial metabolites identified to increase or decrease host susceptibility to APAP-induced liver injury. Signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as an excellent system for uncovering gut microbial metabolites of previously unknown function. Moreover, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. Significance Statement This review provides an overview of recent discoveries from investigating whether and how the gut microbiota modulates the host susceptibility to APAP-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.

7.
Phys Rev Lett ; 132(24): 246301, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949365

RESUMEN

The Dyakonov-Perel (DP) mechanism of spin relaxation has long been considered irrelevant in centrosymmetric systems since it was developed originally for noncentrosymmetric ones. We investigate whether this conventional understanding extends to the realm of orbital relaxation, which has recently attracted significant attention. Surprisingly, we find that orbital relaxation in centrosymmetric systems exhibits the DP-like behavior in the weak scattering regime. Moreover, the DP-like orbital relaxation can make the spin relaxation in centrosymmetric systems DP-like through the spin-orbit coupling. We also find that the DP-like orbital and spin relaxations are anisotropic even in materials with high crystal symmetry (such as face-centered cubic structure) and may depend on the orbital and spin nature of electron wave functions.

8.
Clin Chem Lab Med ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38630027

RESUMEN

OBJECTIVES: This study evaluates the HYDRASHIFT assay's effectiveness in mitigating daratumumab interference on serum protein tests during multiple myeloma (MM) treatment, aiming to ensure an accurate assessment of treatment response. METHODS: We analyzed 113 serum samples from 68 MM patients undergoing daratumumab treatment, employing both standard IF and the HYDRASHIFT assay. The assay's precision was determined through intra-day and inter-day variability assessments, while its specificity was verified using serum samples devoid of daratumumab. Comparative analysis of IF results, before and after the application of the HYDRASHIFT assay, facilitated the categorization of treatment responses in alignment with the International Myeloma Working Group's response criteria. RESULTS: The precision underscored the assay's consistent repeatability and reproducibility, successfully eliminating interference of daratumumab-induced Gκ bands. Specificity assessments demonstrated the assay's capability to distinguish daratumumab from both isatuximab and naturally occurring M-proteins. Of the analyzed cases, 91 exhibited successful migration of daratumumab-induced Gκ bands, thereby enhancing the accuracy of treatment response classification. The remaining 22 cases did not show a visible migration complex, likely due to the low concentration of daratumumab in the serum. These findings underscore the assay's critical role in distinguishing daratumumab from endogenous M-protein, particularly in samples with a single Gκ band on standard IF, where daratumumab and endogenous M-protein had co-migrated. CONCLUSIONS: The HYDRASHIFT assay demonstrates high precision, specificity, and utility in the accurate monitoring of treatment responses in MM patients receiving daratumumab. This assay represents a significant advancement in overcoming the diagnostic challenges posed by daratumumab interference.

9.
Phys Rev Lett ; 130(24): 246701, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390424

RESUMEN

While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.


Asunto(s)
Electricidad , Torque , Movimiento (Física)
10.
Can J Neurol Sci ; 50(4): 515-528, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35614521

RESUMEN

BACKGROUND: A large proportion of Alzheimer's disease (AD) patients have coexisting subcortical vascular dementia (SVaD), a condition referred to as mixed dementia (MixD). Brain imaging features of MixD presumably include those of cerebrovascular disease and AD pathology, but are difficult to characterize due to their heterogeneity. OBJECTIVE: To perform an exploratory analysis of conventional and non-conventional structural magnetic resonance imaging (MRI) abnormalities in MixD and to compare them to those observed in AD and SVaD. METHODS: We conducted a cross-sectional, region-of-interest-based analysis of 1) hyperintense white-matter signal abnormalities (WMSA) on T2-FLAIR and hypointense WMSA on T1-weighted MRI; 2) diffusion tensor imaging; 3) quantitative susceptibility mapping; and 4) effective transverse relaxation rate (R2*) in N = 17 participants (AD:5, SVaD:5, MixD:7). General linear model was used to explore group differences in these brain imaging measures. RESULTS: Model findings suggested imaging characteristics specific to our MixD group, including 1) higher burden of WMSAs on T1-weighted MRI (versus both AD and SVaD); 2) frontal lobar preponderance of WMSAs on both T2-FLAIR and T1-weighted MRI; 3) higher fractional anisotropy values within normal-appear white-matter tissues (versus SVaD, but not AD); and 4) lower R2* values within the T2-FLAIR WMSA areas (versus both AD and SVaD). CONCLUSION: These findings suggest a preliminary picture of the location and type of brain imaging characteristics associated with MixD. Future imaging studies may employ region-specific hypotheses to distinguish MixD more rigorously from AD or SVaD.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Demencias Mixtas , Humanos , Demencia Vascular/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen de Difusión Tensora , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
11.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687830

RESUMEN

In this study, a combined convolutional neural network for the diagnosis of three benign skin tumors was designed, and its effectiveness was verified through quantitative and statistical analysis. To this end, 698 sonographic images were taken and diagnosed at the Department of Dermatology at Severance Hospital in Seoul, Korea, between 10 November 2017 and 17 January 2020. Through an empirical process, a convolutional neural network combining two structures, which consist of a residual structure and an attention-gated structure, was designed. Five-fold cross-validation was applied, and the train set for each fold was augmented by the Fast AutoAugment technique. As a result of training, for three benign skin tumors, an average accuracy of 95.87%, an average sensitivity of 90.10%, and an average specificity of 96.23% were derived. Also, through statistical analysis using a class activation map and physicians' findings, it was found that the judgment criteria of physicians and the trained combined convolutional neural network were similar. This study suggests that the model designed and trained in this study can be a diagnostic aid to assist physicians and enable more efficient and accurate diagnoses.


Asunto(s)
Aprendizaje Profundo , Neoplasias Cutáneas , Humanos , Ultrasonografía , Hospitales , Juicio , Neoplasias Cutáneas/diagnóstico por imagen
12.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904952

RESUMEN

Autonomous driving includes recognition, judgment, and control technologies, and is implemented using sensors such as cameras, LiDAR, and radar. However, recognition sensors are exposed to the outside environment and their performance may deteriorate because of the presence of substances that interfere with vision, such as dust, bird droppings, and insects, during operation. Research on sensor cleaning technology to solve this performance degradation has been limited. This study used various types and concentrations of blockage and dryness to demonstrate approaches to the evaluation of cleaning rates for selected conditions that afford satisfactory results. To determine the effectiveness of washing, the study used the following criteria: washer, 0.5 bar/s and air, 2 bar/s, with 3.5 g being used three times to test the LiDAR window. The study found that blockage, concentration, and dryness are the most important factors, and in that order. Additionally, the study compared new forms of blockage, such as those caused by dust, bird droppings, and insects, with standard dust that was used as a control to evaluate the performance of the new blockage types. The results of this study can be used to conduct various sensor cleaning tests and ensure their reliability and economic feasibility.

13.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836857

RESUMEN

This study is the first to develop technology to evaluate the object recognition performance of camera sensors, which are increasingly important in autonomous vehicles owing to their relatively low price, and to verify the efficiency of camera recognition algorithms in obstruction situations. To this end, the concentration and color of the blockage and the type and color of the object were set as major factors, with their effects on camera recognition performance analyzed using a camera simulator based on a virtual test drive toolkit. The results show that the blockage concentration has the largest impact on object recognition, followed in order by the object type, blockage color, and object color. As for the blockage color, black exhibited better recognition performance than gray and yellow. In addition, changes in the blockage color affected the recognition of object types, resulting in different responses to each object. Through this study, we propose a blockage-based camera recognition performance evaluation method using simulation, and we establish an algorithm evaluation environment for various manufacturers through an interface with an actual camera. By suggesting the necessity and timing of future camera lens cleaning, we provide manufacturers with technical measures to improve the cleaning timing and camera safety.

14.
Phys Rev Lett ; 128(17): 176601, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570433

RESUMEN

Orbital dynamics in time-reversal-symmetric centrosymmetric systems is examined theoretically. Contrary to common belief, we demonstrate that many aspects of orbital dynamics are qualitatively different from spin dynamics because the algebraic properties of the orbital and spin angular momentum operators are different. This difference generates interesting orbital responses, which do not have spin counterparts. For instance, the orbital angular momentum expectation values may oscillate even without breaking neither the time-reversal nor the inversion symmetry. Our quantum Boltzmann approach reproduces the previous result on the orbital Hall effect and reveals additional orbital dynamics phenomena, whose detection schemes are discussed briefly. Our work will be useful for the experimental differentiation of the orbital dynamics from the spin dynamics.

15.
J Korean Med Sci ; 37(7): e59, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35191235

RESUMEN

BACKGROUND: Recent genomic studies identified four discrete molecular subgroups of medulloblastoma (MB), and the risk stratification of childhood MB in the context of subgroups was refined in 2015. In this study, we investigated the effect of molecular subgroups on the risk stratification of childhood MB. METHODS: The nCounter® system and a customized cancer panel were used for molecular subgrouping and risk stratification in archived tissues. RESULTS: A total of 44 patients were included in this study. In clinical risk stratification, based on the presence of residual tumor/metastasis and histological findings, 24 and 20 patients were classified into the average-risk and high-risk groups, respectively. Molecular subgroups were successfully defined in 37 patients using limited gene expression analysis, and DNA panel sequencing additionally classified the molecular subgroups in three patients. Collectively, 40 patients were classified into molecular subgroups as follows: WNT (n = 7), SHH (n = 4), Group 3 (n = 8), and Group 4 (n = 21). Excluding the four patients whose molecular subgroups could not be determined, among the 17 average-risk group patients in clinical risk stratification, one patient in the SHH group with the TP53 variant was reclassified as very-high-risk using the new risk classification system. In addition, 5 out of 23 patients who were initially classified as high-risk group in clinical risk stratification were reclassified into the low- or standard-risk groups in the new risk classification system. CONCLUSION: The new risk stratification incorporating integrated diagnosis showed some discrepancies with clinical risk stratification. Risk stratification based on precise molecular subgrouping is needed for the tailored treatment of MB patients.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/diagnóstico , Neoplasias Cerebelosas/genética , Humanos , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Medición de Riesgo , Factores de Riesgo
16.
Hippocampus ; 31(7): 717-736, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33394547

RESUMEN

The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The "dual-stream model" was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual-stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal-directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal-directed Interaction of Stimulus and Task-demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices-the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects-with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non-navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non-navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.


Asunto(s)
Objetivos , Corteza Perirrinal , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Giro Parahipocampal/fisiología , Corteza Perirrinal/fisiología , Lóbulo Temporal/fisiología
17.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695976

RESUMEN

Remote sensing of vital signs has been developed to improve the measurement environment by using a camera without a skin-contact sensor. The camera-based method is based on two concepts, namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures the color variation of the face generated by reflectance of blood, whereas the motion-based method, remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat. The main challenge of remote sensing is overcoming the noise of illumination variance and motion artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method for RGB colors or motions of multiple facial points to overcome the noise. However, they have still been limited in their real-world applications. This study hypothesized that BSS-based combining of colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus, this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS methods such as ensemble averaging (EA), principal component analysis (PCA), and independent component analysis (ICA). The proposed method was verified by comparing it with previous RPPG and RBCG from three datasets according to illumination variance and motion artifacts. The three main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG improved the remote sensing with the benefits of each measurement; (2) the proposed method was demonstrated by comparing it with previous methods; and (3) the proposed method was tested in various measurement conditions for more practical applications.


Asunto(s)
Balistocardiografía , Fotopletismografía , Algoritmos , Artefactos , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador
18.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883820

RESUMEN

Tracking consumer empathy is one of the biggest challenges for advertisers. Although numerous studies have shown that consumers' empathy affects purchasing, there are few quantitative and unobtrusive methods for assessing whether the viewer is sharing congruent emotions with the advertisement. This study suggested a non-contact method for measuring empathy by evaluating the synchronization of micro-movements between consumers and people within the media. Thirty participants viewed 24 advertisements classified as either empathy or non-empathy advertisements. For each viewing, we recorded the facial data and subjective empathy scores. We recorded the facial micro-movements, which reflect the ballistocardiography (BCG) motion, through the carotid artery remotely using a camera without any sensory attachment to the participant. Synchronization in cardiovascular measures (e.g., heart rate) is known to indicate higher levels of empathy. We found that through cross-entropy analysis, the more similar the micro-movements between the participant and the person in the advertisement, the higher the participant's empathy scores for the advertisement. The study suggests that non-contact BCG methods can be utilized in cases where sensor attachment is ineffective (e.g., measuring empathy between the viewer and the media content) and can be a complementary method to subjective empathy scales.


Asunto(s)
Balistocardiografía , Empatía , Emociones , Frecuencia Cardíaca , Humanos , Movimiento
19.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884926

RESUMEN

Intraductal carcinoma of the prostate (IDC-P) is a rare and unique form of aggressive prostate carcinoma, which is characterized by an expansile proliferation of malignant prostatic epithelial cells within prostatic ducts or acini and the preservation of basal cell layers around the involved glands. The vast majority of IDC-P tumors result from adjacent high-grade invasive cancer via the retrograde spreading of tumor cells into normal prostatic ducts or acini. A subset of IDC-P tumors is rarely derived from the de novo intraductal proliferation of premalignant cells. The presence of IDC-P in biopsy or surgical specimens is significantly associated with aggressive pathologic features, such as high Gleason grade, large tumor volume, and advanced tumor stage, and with poor clinical courses, including earlier biochemical recurrence, distant metastasis, and worse survival outcomes. These architectural and behavioral features of IDC-P may be driven by specific molecular properties. Notably, IDC-P possesses distinct genomic profiles, including higher rates of TMPRSS2-ERG gene fusions and PTEN loss, increased percentage of genomic instability, and higher prevalence of germline BRCA2 mutations. Considering that IDC-P tumors are usually resistant to conventional therapies for prostate cancer, further studies should be performed to develop optimal therapeutic strategies based on distinct genomic features, such as treatment with immune checkpoint blockades or poly (adenosine diphosphate-ribose) polymerase inhibitors for patients harboring increased genomic instability or BRCA2 mutations, as well as genetic counseling with genetic testing. Patient-derived xenografts and tumor organoid models can be the promising in vitro platforms for investigating the molecular features of IDC-P tumor.


Asunto(s)
Mutación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Reparación del ADN/genética , Inestabilidad Genómica , Humanos , Masculino , Medicina de Precisión , Neoplasias de la Próstata/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Proc Jpn Acad Ser B Phys Biol Sci ; 96(7): 322-334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32788554

RESUMEN

Here, we report the groundwater oxygen isotope anomalies caused by the 2016 Kumamoto earthquake (MJMA7.3) that occurred in Southwest Japan on April 16, 2016. One hundred and seventeen groundwater samples were collected from a deep well located 3 km to the southeast of the epicenter in Mifune Town, Kumamoto Prefecture; they were drinking water packed in PET bottles and distributed in the area between April 2015 and March 2018. Further, the oxygen and hydrogen isotopes were evaluated via cavity ring-down spectroscopy without performing any pretreatment. An anomalous increase was observed with respect to the δ18O value (up to 0.51‰) soon after the earthquake along with a precursory increase of 0.38‰ in January 2016 before the earthquake. During these periods, there was no noticeable change in the hydrogen isotopic ratios. Rapid crustal deformation related to the earthquake may have enhanced the microfracturing of the aquifer rocks and the production of new surfaces, inducing δ18O enrichment via oxygen isotopic exchange between rock and porewater without changing δ2H.


Asunto(s)
Terremotos , Agua Subterránea/química , Oxígeno/análisis , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA