RESUMEN
Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.
Asunto(s)
Euphorbiaceae/enzimología , Jatropha/enzimología , Familia de Multigenes , Liasas de Fósforo-Oxígeno/metabolismo , Biocombustibles , Mapeo Cromosómico , Euphorbiaceae/genética , Euphorbiaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica , Jatropha/genética , Jatropha/crecimiento & desarrollo , Lípidos/biosíntesis , Anotación de Secuencia Molecular , Ésteres del Forbol/metabolismo , Liasas de Fósforo-Oxígeno/genética , Filogenia , Fitomejoramiento , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrolloRESUMEN
BACKGROUND: Proanthocyanidins are oligomeric or polymeric end products of flavonoid metabolic pathways starting with the central phenylpropanoid pathway. Although soybean (Glycine spp.) seeds represent a major source of nutrients for the human diet, as well as components for the cosmetics industry as a result of their high levels of flavonoid metabolites, including isoflavonoids, anthocyanins and proanthocyanidins, the genetic regulatory mechanisms underlying proanthocyanidin biosynthesis in soybean remain unclear. RESULTS: We evaluated interspecific and intraspecific variability in flavonoid components in soybean using 43 cultivars, landraces and wild soybean accessions. We performed transcriptomic profiling of genes encoding enzymes involved in flavonoid biosynthesis using three soybean genotypes, Hwangkeum (elite cultivar), IT109098 (landrace) and IT182932 (wild accession), in seeds. We identified a Glycine max landrace, IT109098, with a proanthocyanidin content as high as that of wild soybean. Different homologous genes for anthocyanidin reductase, which is involved in proanthocyanidin biosynthesis, were detected as differentially expressed genes between IT109098 and IT182932 compared to Hwangkeum. CONCLUSION: We detected major differences in the transcriptional levels of genes involved in the biosynthesis of proanthocyanidin and anthocyanin among genotypes beginning at the early stage of seed development. The results of the present study provide insights into the underlying genetic variation in proanthocyanidin biosynthesis among soybean genotypes. © 2017 Society of Chemical Industry.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Vías Biosintéticas , Glicina/metabolismo , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Glycine max/metabolismo , TranscriptomaRESUMEN
The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.
Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/métodos , Mapeo Cromosómico , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.
Asunto(s)
Fabaceae , Vigna , Vigna/genética , Fabaceae/genética , Filogenia , Sintenía , Genoma de PlantaRESUMEN
DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH - where C is cytosine and H is any other nucleotide - were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding.
Asunto(s)
Metilación de ADN/genética , Genoma de Planta , Vigna/genética , Secuencia de Bases , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN , Transcriptoma/genéticaRESUMEN
Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.
RESUMEN
Adzuki bean (Vigna angularis var. angularis) is a dietary legume crop in East Asia. The presumed progenitor (Vigna angularis var. nipponensis) is widely found in East Asia, suggesting speciation and domestication in these temperate climate regions. Here, we report a draft genome sequence of adzuki bean. The genome assembly covers 75% of the estimated genome and was mapped to 11 pseudo-chromosomes. Gene prediction revealed 26,857 high confidence protein-coding genes evidenced by RNAseq of different tissues. Comparative gene expression analysis with V. radiata showed that the tissue specificity of orthologous genes was highly conserved. Additional re-sequencing of wild adzuki bean, V. angularis var. nipponensis, and V. nepalensis, was performed to analyze the variations between cultivated and wild adzuki bean. The determined divergence time of adzuki bean and the wild species predated archaeology-based domestication time. The present genome assembly will accelerate the genomics-assisted breeding of adzuki bean.
Asunto(s)
Fabaceae/genética , Genoma de Planta , Evolución Biológica , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Sitios de Carácter CuantitativoRESUMEN
Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis.
Asunto(s)
ADN de Plantas/genética , Evolución Molecular , Fabaceae/genética , Genoma de Planta/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , República de Corea , Análisis de SecuenciaRESUMEN
Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL) for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr) 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both Chrs. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22) are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.