Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474006

RESUMEN

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Asunto(s)
Lípido A , Salmonella typhimurium , Humanos , Animales , Ratones , Salmonella typhimurium/genética , Lípido A/química , Lipopolisacáridos/química , Virulencia , Matriz Extracelular de Sustancias Poliméricas , Células HeLa , Proteínas Bacterianas/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928101

RESUMEN

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Asunto(s)
Autofagosomas , Autofagia , Phlebovirus , Triptófano , Tirosina , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Autofagosomas/metabolismo , Células HeLa , Phlebovirus/genética , Phlebovirus/fisiología , Phlebovirus/metabolismo , Autofagia/genética , Tirosina/metabolismo , Triptófano/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mutación , Sustitución de Aminoácidos , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/genética , Lisosomas/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética
3.
Microb Pathog ; 178: 106079, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36966885

RESUMEN

Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Phlebovirus/genética , Phlebovirus/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Modelos Animales de Enfermedad
4.
Mol Ther ; 30(5): 1926-1940, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35123065

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitating the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M), and epitopes of non-structural protein 13 (nsp13) of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows needle-free mass vaccination. Favorable T-helper (Th) 1-dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (clade G). We recorded a difference in induction of immunoglobulin (Ig) A response by the immunization route, with the oral route eliciting a strong mucosal secretory IgA (sIgA) response, which possibly has contributed to the enhanced protection conferred by oral immunization. Hamsters immunized orally were completely protected against viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Bacterias , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Cricetinae , Humanos , Ratones , Replicón , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834832

RESUMEN

Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.


Asunto(s)
Proteasa La , Proteasas ATP-Dependientes/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Proteasa La/genética , Especificidad por Sustrato
6.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139181

RESUMEN

Catalase, an antioxidant enzyme widely produced in mammalian cells and bacteria, is crucial to mitigating oxidative stress in hostile environments. This function enhances the intracellular survivability of various intracellular growth pathogens, including Brucella (B.) abortus. In this study, to determine whether the suppression of catalase can inhibit the intracellular growth of B. abortus, we employed 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, in both RAW 264.7 macrophage cells and an ICR mouse model during Brucella infection. The intracellular growth assay indicated that 3-AT exerts growth-inhibitory effects on B. abortus within macrophages. Moreover, it contributes to the accumulation of reactive oxygen species and the formation of nitric oxide. Notably, 3-AT diminishes the activation of the nucleus transcription factor (NF-κB) and modulates the cytokine secretion within infected cells. In our mouse model, the administration of 3-AT reduced the B. abortus proliferation within the spleens and livers of infected mice. This reduction was accompanied by a diminished immune response to infection, as indicated by the lowered levels of TNF-α, IL-6, and IL-10 and altered CD4+/CD8+ T-cell ratio. These results suggest the protective and immunomodulatory effects of 3-AT treatment against Brucella infection.


Asunto(s)
Brucella abortus , Brucelosis , Animales , Ratones , Amitrol (Herbicida)/farmacología , Catalasa , Ratones Endogámicos ICR , Brucelosis/tratamiento farmacológico , Brucelosis/microbiología , Inmunidad , Mamíferos
7.
Vet Res ; 53(1): 76, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183131

RESUMEN

In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.


Asunto(s)
Antígenos O , Vacunas contra la Salmonella , Animales , Ácido Aspártico , Citocinas , Humanos , Inmunoglobulina G , Lípido A , Ratones , Ratones Endogámicos BALB C , Salmonella typhimurium/genética , Vacunas Atenuadas
8.
Microb Pathog ; 152: 104655, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33264666

RESUMEN

To date, the antimicrobial activity of arachidonic acid (AA) with regard to pathogenesis of Brucella in macrophages is unknown. We found that AA is highly toxic to B. abortus in a time- and dose-dependent manner. Transcription profiling of different groups of phospholipases A2 (PLA2) was examined, ten PLA2 were detected including cPLA2-IV-A, cPLA2-IV-B, iPLA2-VI, sPLA2-I-B, sPLA2-II-C, sPLA2-II-D, sPLA2-II-E, sPLA2-V, sPLA2-X, sPLA2-XII-A. Phagocytic signaling investigation indicated that AA treatment attenuated p38α activity in infected culture macrophages possibly leading to inhibition of Brucella internalization. Post-treatment with the fatty acid did not influence bacterial intracellular multiplication or alter production of antimicrobial effectors like ROS and NO in RAW 264.7 cells. On the other hand, AA administration significantly reduced bacterial load and modestly inhibited pro-inflammatory cytokine secretion including TNF, IFN-γ and IL-6 in mice plasma. To our knowledge, we are the first to suggest that B. abortus invasion to RAW 264.7 macrophages is impaired by AA.


Asunto(s)
Brucella abortus , Transcriptoma , Animales , Ácido Araquidónico , Brucella abortus/genética , Ratones , Fosfolipasas A2/genética , Transducción de Señal
9.
Microb Pathog ; 158: 105079, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34245824

RESUMEN

Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.


Asunto(s)
Brucelosis , Ácidos Láuricos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Uracilo/análogos & derivados , Animales , Brucella abortus , Bovinos , Humanos , Ratones , Células RAW 264.7 , Uracilo/farmacología
10.
Vet Res ; 52(1): 125, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593043

RESUMEN

Efficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek's disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek's disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.


Asunto(s)
Sistemas CRISPR-Cas , Pollos , Herpesvirus Gallináceo 2/fisiología , Enfermedad de Marek/prevención & control , Plásmidos/uso terapéutico , Enfermedades de las Aves de Corral/prevención & control , Salmonella/fisiología , Animales , Femenino , Leucocitos Mononucleares/virología , Enfermedad de Marek/patología , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , Salmonella/virología
11.
Environ Res ; 196: 110947, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33662346

RESUMEN

The present study investigates the potential of SARS-CoV-2 inactivation by a copper sulfide (CuS) incorporated three-layer mask design. The mask consisted of the outer, middle, and inner layers to give comfort, strength, shape, and safety. The outer layer contained a total of 4.4% CuS (w/w) (2.2% CuS coated & 2.2% CuS impregnated) nylon fibers and the middle entrapment area contain a total of 17.6% CuS (w/w) impregnated nylon. No CuS was present in the inner layer. The antiviral efficacy assessment revealed, CuS incorporated mask is highly effective in inactivating SARS-CoV-2 within 30 min exposure. After, 1h and 2 h exposure, near-complete elimination of virus were observed by cytopathy, fluorescence, and viral copy number. The antiviral activity of the mask material was derived by incorporated solid-state CuS. Noticeably, the antiviral activity of CuS against SARS-CoV-2 was in the form of solid-state CuS, but not as Cu2+ ionic form derived by dissolved CuSO4. The kinetics of droplet entrapment revealed, that the three-layered mask almost completely block virus-containing droplet pass-through for short exposure periods of 1-2 min, and 80% efficacy for longer exposure times of 5-10 min. We also demonstrated the incorporated CuS is evenly distributed all over the fibers assuring the uniformity of potential antiviral activity and proves, CuS particles are not easily shed out of the fabric fibers. The inactivation efficacy demonstrated against SARS-CoV-2 proves that the CuS incorporated three-layer mask will be a lifesaver during the present intense global pandemic.


Asunto(s)
COVID-19 , Cobre , Humanos , Pandemias , ARN Viral , SARS-CoV-2
12.
Microb Pathog ; 138: 103857, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31705999

RESUMEN

In the present study, the importance of sodium bicarbonate antacid as an agent for an orally delivered attenuated Salmonella strain secreting Brucella antigens Cu-Zn superoxide dismutase (SodC) and outer membrane protein 19 (Omp19) as a live vaccine candidate against Brucella infection was investigated. First, Brucella antigens SodC and Omp19 were cloned into a prokaryotic constitutive expression vector, pJHL65. Then secretion of proteins was verified after transformation into an attenuated Salmonella typhimurium (ST) strain, JOL1800 (Δlon, ΔcpxR, Δasd, ΔrfaL), using western blot analysis. Mice were orally inoculated with phosphate-buffered saline (PBS) or with a co-mixture Salmonella secreting each antigens at a 1:1 ratio, each containing 1 × 108 CFU/mouse with and without sodium bicarbonate treatment. For antacid treatment, 1.3% w/v sodium bicarbonate was orally administered 30 min before and immediately after immunization with the Salmonella formulation. Humoral and cell-mediated immune responses were evaluated to investigate the efficacy of sodium bicarbonate in an oral formulation. The results indicated that addition of sodium bicarbonate to the vaccine significantly increased (P < 0.05) levels of anti-Brucella-specific systemic IgG responses, lymphocyte proliferation, and CD4+ T cell responses, indicating induction of a mixed Th1-Th2 response. Immunohistochemical assays and bacterial enumeration in intestinal samples also indicated that administration of sodium bicarbonate enhanced colonization of Salmonella. These results indicate that ingestion of the Salmonella formulation with sodium bicarbonate can enhance colonization of Salmonella and induce a significant protective immune response against Brucella compared with a formulation without sodium bicarbonate. Thus, incorporation of sodium bicarbonate as an antacid buffer is highly recommended for this oral live vaccine.


Asunto(s)
Vacuna contra la Brucelosis , Bicarbonato de Sodio , Vacunas Atenuadas , Administración Oral , Animales , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/biosíntesis , Vacunas Bacterianas/química , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/biosíntesis , Vacuna contra la Brucelosis/química , Inmunidad Celular , Inmunidad Humoral , Intestinos/inmunología , Intestinos/microbiología , Ratones , Microorganismos Modificados Genéticamente , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Bicarbonato de Sodio/administración & dosificación , Transformación Bacteriana , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/biosíntesis , Vacunas Atenuadas/química
13.
Microb Pathog ; 147: 104252, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32439565

RESUMEN

The present study investigates the enhancement of immunogenicity and protection efficacy of Salmonella Typhimurium ghosts surface-displayed with FliC against chicken salmonellosis. The membrane-anchored FliC is a potential TLR-5 agonist, delivers an essential adjuvant effect for the ghost vaccine candidate. The present ghost plasmid pJHL184 construct carries a convergent dual promoter system that has the temperature-dependent induction of the phage lysis gene E and the target antigen FliC at the same time. Under permissible conditions of temperatures, less than 30 °C at the presence of 20 mM l-arabinose effectively suppresses expression of the lysis gene. Once the temperature is up-lifted to 42 °C without arabinose, cause the generation of ST ghosts expelling the cytoplasmic content. The addition of FliC adjuvant significantly enhanced the IgY response, cell-mediated immune responses, regulatory cytokine induction and subsequently enhanced protection against Salmonella challenge. Further, intramuscular immunization with ST ghosts displaying FliC induced particularly high CD8+ response demarcating its proficiency to elicit Type I immune responses. Further, ST ghosts displaying FliC caused an increase in both CD4+ and CD8+ response compared to the PBS control suggesting its capability to engage both cell-mediated and humoral immune responses essential for the elimination of Salmonella. Upon the virulent challenge, we could observe a significant reduction in challenged bacterial load on spleen, liver and cecum tissues in the ST ghosts surface-displaying FliC adjuvant. Our study suggests the biological incorporation of FliC on ST ghosts enhances vaccine immunogenic potency and acts as a safe and effective prevention strategy against chicken salmonellosis.


Asunto(s)
Enfermedades de las Aves de Corral , Infecciones por Salmonella , Animales , Pollos , Escherichia coli , Flagelina/genética , Inmunidad Humoral , Inmunización , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/genética , Vacunación
14.
Microb Pathog ; 143: 104137, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32169487

RESUMEN

In this study, two recombinant proteins encoded by Brucella abortus genes Adk and SecB were evaluated as single subunit vaccine (SSV) as well as combined subunit vaccine (CSV) against B. abortus infection in BALB/c mice. These genes were cloned into pcold-TF expression system and recombinant proteins were expressed in Escherichia coli DH5α. The immunoreactivity of purified rAdk and rSecB was analyzed by immunoblotting showing that purified rAdk and rSecB as well as pcold-TF vector strongly reacted with Brucella-positive serum. Mice were immunized intraperitoneally with SSVs, CSV, pcold-TF, RB51 and PBS. The analysis of cytokine revealed that SSVs and CSV can strongly induce production of proinflammatory cytokines TNF and IL-6, suggesting that these subunit vaccines elicited innate immune response, particularly, activated antimicrobial mechanism of macrophages to limit the initial infection. On the other hand, immunization with SSVs and CSV elicited strong IFN-γ production and decreased IL-10 production compared to PBS group. The secretion profiles of IFN-γ and IL-10 together with an enhancement of blood CD4+ population and significantly induced specific IgG1 and IgG2a antibodies indicated that SSVs and CSV induced not only humoral immunity but also T helper 1 T cell immunity. Finally, spleen proliferation and bacterial burden in the spleen of mice vaccinated with these subunit vaccines were significantly lower than those of PBS group, which conferred significant protection against B. abortus infection. Altogether, the potential of these antigens of B. abortus could be prospective candidates to develop subunit vaccines against brucellosis.


Asunto(s)
Vacunas Bacterianas/uso terapéutico , Brucella abortus/inmunología , Brucelosis/prevención & control , Animales , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Western Blotting , Brucelosis/inmunología , Citocinas/sangre , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes , Vacunas Sintéticas
15.
Vet Res ; 51(1): 6, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973749

RESUMEN

The present study employs the Brucella abortus L7/L12 antigen in a Salmonella secretion platform and investigates its ability to induce protective immune responses against wild type challenge in BALB/c mice. The highly conserved L7/L12 open reading frame was PCR amplified from B. abortus and cloned into a prokaryotic expression vector, pJHL65, directly under the beta-lactamase secretory signal. The plasmid constructs pJHL65::L7/L12 was then transformed into an attenuated Salmonella Typhimurium strain, JOL1800 (∆lon, ∆cpxR, ∆asd, and ∆rfaL), and protein secretion was verified by Western blot. Three mice groups were inoculated with either phosphate-buffered saline (PBS), vector-only control, or the vaccine strain secreting L7/L12 antigen. Assessment of humoral and cell-mediated immune responses revealed successful elicitation of Brucella antigen-specific Th1 and Th2 immune responses that were significantly higher than PBS and vector control groups. The immune responses were confirmed by splenocyte proliferation assay, flow cytometry analysis for CD4+ and CD8+ markers, and RT-PCR based cytokine profiling upon restimulation with L7/L12 purified antigen. Results indicate that immunization with Salmonella secreting L7/L12 antigen demonstrated significant enhancement of cell-mediated immune (CMI) responses in immunized mice. The overall effectiveness of the immunization was evaluated by challenging with virulent B. abortus that revealed significant reduction in Brucella colonization in spleen and liver tissues in Salmonella L7/L12 immunized mice. Delivery of Brucella protective antigen L7/L12 using the Salmonella secretion system can effectively accomplish immunogenic advantages of both Salmonella and L7/L12 to derive robust CMI responses and induce humoral immunity to protect against Brucella infection in the mouse model.


Asunto(s)
Vacuna contra la Brucelosis/inmunología , Brucella abortus/inmunología , Brucelosis/veterinaria , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Proteínas Ribosómicas/inmunología , Animales , Antígenos Bacterianos/inmunología , Brucelosis/inmunología , Brucelosis/microbiología , Brucelosis/prevención & control , Femenino , Ratones , Ratones Endogámicos BALB C , Salmonella typhimurium/genética , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas/inmunología
16.
Vet Res ; 51(1): 37, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143695

RESUMEN

Chitosan nanoparticles (CNPs) represent an efficient vaccination tool to deliver immunogenic antigens to the antigen-presenting cells (APCs), which subsequently stimulate protective immune responses against infectious diseases. Herein, we prepared CNPs encapsulating mRNA molecules followed by surface coating with conserved H9N2 HA2 and M2e influenza proteins. We demonstrated that CNPs efficiently delivered mRNA molecules into APCs and had effectively penetrated the mucosal barrier to reach to the immune initiation sites. To investigate the potential of CNPs delivering influenza antigens to stimulate protective immunity, we intranasally vaccinated chickens with empty CNPs, CNPs delivering HA2 and M2e in both mRNA and protein formats (CNPs + RNA + Pr) or CNPs delivering antigens in protein format only (CNPs + Pr). Our results demonstrated that chickens vaccinated with CNPs + RNA + Pr elicited significantly (p < 0.05) higher systemic IgG, mucosal IgA antibody responses and cellular immune responses compared to the CNPs + Pr vaccinated group. Consequently, upon challenge with either H7N9 or H9N2 avian influenza viruses (AIVs), efficient protection, in the context of viral load and lung pathology, was observed in chickens vaccinated with CNPs + RNA + Pr than CNPs + Pr vaccinated group. In conclusion, we show that HA2 and M2e antigens elicited a broad spectrum of protection against AIVs and incorporation of mRNAs in vaccine formulation is an effective strategy to induce superior immune responses.


Asunto(s)
Pollos , Quitosano/administración & dosificación , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/terapia , Enfermedades de las Aves de Corral/terapia , Administración Intranasal/veterinaria , Animales , Nanopartículas/administración & dosificación , ARN Mensajero/inmunología , ARN Viral/inmunología , Vacunación/veterinaria
17.
Avian Pathol ; 49(5): 486-495, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483989

RESUMEN

H9N2, a low pathogenic avian influenza virus, causes significant economic losses in the poultry industry worldwide. Herein, we describe the construction of an attenuated Salmonella Gallinarum (SG) strain for expression and delivery of H9N2 haemagglutinin (HA) 1 (SG-HA1), HA2 (SG-HA2) and/or the conserved matrix protein 2 ectodomain (SG-M2e). We demonstrated that recombinant SG strains expressing HA1, HA2 and M2e antigens were immunogenic and safe in a chicken model. Chickens (n = 8) were vaccinated once orally with SG alone, SG-HA1, SG-HA2, SG-M2e, or mixture of SG-HA1, SG-HA2 and SG-M2e, or vaccinated once intramuscularly with an oil-adjuvant inactivated H9N2 vaccine. Our results demonstrated that vaccination with SG mutants encoding influenza antigens, administered individually or as a mixture, elicited significantly (P < 0.05) greater antigen-specific humoral and cell-mediated immune responses in chickens compared with those vaccinated with SG alone. A conventional H9N2 vaccine induced significantly (P < 0.05) greater HA1 and HA2 antibody responses than SG-based H9N2 vaccine strains, but significantly (P < 0.05) less robust M2e-specific responses. Upon challenge with the virulent H9N2 virus on day 28 post-vaccination, chickens vaccinated with either the SG-based H9N2 or conventional H9N2 vaccines exhibited comparable lung inflammation and viral loads, although both were significantly lower (P < 0.05) than in the group vaccinated with SG alone. In conclusion, our results showed that SG-based vaccination stimulated efficient immune responses against virulent H9N2. Further studies are needed to fully develop this approach as a preventive strategy for low pathogenic avian influenza viruses affecting poultry. RESEARCH HIGHLIGHTS S. gallinarum expressing HA1, HA2 and M2e antigens are immunogenic and safe. Salmonella has dual function of acting as a delivery system and as a natural adjuvant. Vaccine constructs elicit specific humoral and cell-mediated immune responses.


Asunto(s)
Pollos/microbiología , Hemaglutininas/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Salmonella enterica/metabolismo , Administración Oral , Animales , Femenino , Hemaglutininas/genética , Hemaglutininas/metabolismo , Inmunidad Celular , Inmunización/veterinaria , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Mutación , Enfermedades de las Aves de Corral/virología , Salmonella enterica/genética , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/metabolismo
18.
Vet Res ; 49(1): 17, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448958

RESUMEN

The obligate intracellular Lawsonia intracellularis (LI), the etiological agent of proliferative enteropathy (PE), is an economically important disease in the swine industry. Due to extreme difficulty of in vitro culture of the pathogen, molecular characterization of protein components of LI that are targets of the immune system, is difficult; thus, the scientific evidence to drive the development of preventive measures is lacking. In this work, we investigated the antigenic and functional characteristics of a putative flagellar-associated protein, LI0570, using in silico computational approaches for epitope prediction and an in vitro protein-based molecular assay. The amino acid sequence of LI0570 exhibited similarities to flagellar-associated proteins in four different bacterial strains. The presence of B cell linear confirmative epitopes of the protein predicted by a bioinformatics tool was validated by western blot analysis using anti-LI mouse hyperimmune serum, which implied that LI0570 induced production of antigen-specific antibodies in vivo. Further, TLR5-stimulating activity and IL-8 cytokine expression produced via downstream signaling were observed in HEK-Blue™-hTLR5 cells stimulated with LI0570. This result indicates that the LI0570 protein can trigger an innate immune response followed by a T-cell-related adaptive immune response in an infected host. Collectively, the data presented here support that the LI0570 protein which shows the antigenic potential could be a useful component of a recombinant vaccine against PE, providing progress toward an effective prevention strategy.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Infecciones por Desulfovibrionaceae/inmunología , Flagelina/inmunología , Interleucina-8/genética , Lawsonia (Bacteria)/inmunología , Enfermedades de los Porcinos/inmunología , Receptor Toll-Like 5/agonistas , Secuencia de Aminoácidos , Animales , Flagelina/química , Células HEK293 , Humanos , Interleucina-8/metabolismo , Lawsonia (Bacteria)/química , Alineación de Secuencia , Porcinos
19.
Vet Res ; 49(1): 99, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285855

RESUMEN

Fowl typhoid (FT), a septicemic disease caused by Salmonella Gallinarum (SG), and H9N2 influenza infection are two economically important diseases that affect poultry industry worldwide. Herein, we exploited a live attenuated SG mutant (JOL967) to deliver highly conserved extracellular domains of H9N2 M2 (M2e) to induce protective immunity against both H9N2 infection and FT. To increase the immunogenicity of M2e, we physically linked it with CD40L and cloned the fusion gene into either prokaryotic constitutive expression vector pJHL65 or mammalian expression vector pcDNA3.1+. Then pJHL65-M2eCD40L or pcDNA-M2eCD40L recombinant plasmid was electroporated into JOL967 strain and the resultant clones were designated as JOL2074 and JOL2076, respectively. We demonstrated that the chickens vaccinated once orally with a co-mix of JOL2074 and JOL2076 strains elicited significantly (p < 0.05) higher M2e-specific humoral and cell-mediated immunity compared to JOL2074 alone vaccinated group. However, SG-specific immune responses were comparable in both the vaccination groups. On challenge with the virulent H9N2 virus (105 TCID50) at 28th day post-vaccination, chickens that received a co-mix of JOL2074 plus JOL2076 strains exhibited significantly (p < 0.05) lower lung inflammation and viral load in both lungs and cloacal samples than JOL2074 alone vaccinated group. Against challenge with the lethal wild-type SG, both the vaccination groups exhibited only 12.5% mortality compared to 75% mortality observed in the control group. In conclusion, we show that SG delivering M2eCD40L can act as a bivalent vaccine against FT and H9N2 infection and further studies are warranted to develop this SG-M2eCD40L vaccine as a broadly protective vaccine against avian influenza virus subtypes.


Asunto(s)
Vacunas Bacterianas/inmunología , Pollos , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Salmonella enterica/inmunología , Animales , Vacunas Atenuadas/inmunología
20.
Vet Res ; 49(1): 91, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208963

RESUMEN

Fowl typhoid (FT), a septicemic disease caused by Salmonella Gallinarum (SG), and infectious bronchitis (IB) are two economically important avian diseases that affect poultry industry worldwide. Herein, we exploited a live attenuated SG mutant, JOL967, to deliver spike (S) protein 1 of IB virus (V) to elicit protective immunity against both FT and IB in chickens. The codon optimized S1 nucleotide sequence was cloned in-frame into a prokaryotic constitutive expression vector, pJHL65. Subsequently, empty pJHL65 or recombinant pJHL65-S1 plasmid was electroporated into JOL967 and the resultant clones were designated as JOL2068 and JOL2077, respectively. Our results demonstrated that the chickens vaccinated once orally with JOL2077 elicited significantly (p < 0.05) higher IBV-specific humoral and cell-mediated immunity compared to JOL2068 and PBS control groups. Consequently, on challenge with the virulent IBV strain at 28th day post-vaccination, JOL2077 vaccinated birds displayed significantly (p < 0.05) lower inflammatory lesions in virus-targeted tissues compared to control groups. Furthermore, 33.3% (2 of 6) of birds vaccinated with JOL2077 vaccine had shown virus recovery from tracheal tissues compared to 100% (6 of 6) recovery obtained in both the control groups. Against wild-type SG lethal challenge, both JOL2077 and JOL2068 vaccinated groups exhibited only 10% mortality compared to 80% mortality observed in PBS control group. In conclusion, we show that JOL2077 can induce efficient IBV- and carrier-specific protective immunity and can act as a bivalent vaccine against FT and IB. Further studies are warranted to investigate the potential of JOL2077 vaccine in broiler and young layer birds.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Glicoproteína de la Espiga del Coronavirus/farmacología , Vacunas Virales/farmacología , Administración Oral , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Inmunidad Celular , Inmunidad Humoral , Inmunización/veterinaria , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/virología , Salmonelosis Animal/microbiología , Salmonella enterica , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/farmacología , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA