Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 554, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787779

RESUMEN

BACKGROUND: Advances in next-generation sequencing technologies have provided an opportunity to perform population-level comparative genomic analysis to discover unique genomic characteristics of domesticated animals. Duck is one of the most popular domesticated waterfowls, which is economically important as a source of meat, eggs, and feathers. The objective of this study is to perform population and functional analyses of Korean native duck, which has a distinct meat flavor and texture phenotype, using whole-genome sequencing data. To study the distinct genomic features of Korean native duck, we conducted population-level genomic analysis of 20 Korean native ducks together with 15 other duck breeds. RESULTS: A total of 15.56 million single nucleotide polymorphisms were detected in Korean native duck. Based on the unique existence of non-synonymous single nucleotide polymorphisms in Korean native duck, a total of 103 genes related to the unique genomic characteristics of Korean native duck were identified in comparison with 15 other duck breeds, and their functions were investigated. The nucleotide diversity and population structures among the used duck breeds were then compared, and their phylogenetic relationship was analyzed. Finally, highly differentiated genomic regions among Korean native duck and other duck breeds were identified, and functions of genes in those regions were examined. CONCLUSIONS: This is the first study to compare the population of Korean native duck with those of other duck breeds by using whole-genome sequencing data. Our findings can be used to expand our knowledge of genomic characteristics of Korean native duck, and broaden our understanding of duck breeds.


Asunto(s)
Patos , Genoma , Animales , Patos/genética , Filogenia , Polimorfismo de Nucleótido Simple , República de Corea , Secuenciación Completa del Genoma
2.
Vet Res ; 51(1): 128, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33050948

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Innata/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Transcriptoma/inmunología , Animales , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Sus scrofa , Porcinos
3.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103450

RESUMEN

Yeonsan Ogye is a rare Korean domestic chicken breed whose entire body, including feathers and skin, has a unique black coloring. Although some protein-coding genes related to this unique feature have been examined, non-coding elements have not been widely investigated. Thus, we evaluated coding and non-coding transcriptome expression and identified long non-coding RNAs functionally linked to protein-coding genes in Ogye. High-throughput RNA sequencing and DNA methylation sequencing were performed to profile the expression of 14,264 Ogye protein-coding and 6900 long non-coding RNA (lncRNA) genes and detect DNA methylation in 20 different tissues of an individual Ogye. Approximately 75% of Ogye lncRNAs and 45% of protein-coding genes showed tissue-specific expression. For some genes, tissue-specific expression levels were inversely correlated with DNA methylation levels in their promoters. Approximately 39% of tissue-specific lncRNAs displayed functional associations with proximal or distal protein-coding genes. Heat shock transcription factor 2-associated lncRNAs appeared to be functionally linked to protein-coding genes specifically expressed in black skin tissues, more syntenically conserved in mammals, and differentially expressed in black relative to in white tissues. Pending experimental validation, our findings increase the understanding of how the non-coding genome regulates unique phenotypes and can be used for future genomic breeding of chickens.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , ARN Largo no Codificante , Animales , Pollos/genética , Pollos/metabolismo , Corea (Geográfico) , Especificidad de Órganos/fisiología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Transcriptoma
4.
Asian-Australas J Anim Sci ; 31(4): 473-479, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29059723

RESUMEN

OBJECTIVE: The study was designed to perform a genome-wide association (GWA) and partitioning of genome using Illumina's PorcineSNP60 Beadchip in order to identify variants and determine the explained heritability for the total number of teats in Yorkshire pig. METHODS: After screening with the following criteria: minor allele frequency, MAF≤0.01; Hardy-Weinberg equilibrium, HWE≤0.000001, a pair-wise genomic relationship matrix was produced using 42,953 single nucleotide polymorphisms (SNPs). A genome-wide mixed linear model-based association analysis (MLMA) was conducted. And for estimating the explained heritability with genome- or chromosome-wide SNPs the genetic relatedness estimation through maximum likelihood approach was used in our study. RESULTS: The MLMA analysis and false discovery rate p-values identified three significant SNPs on two different chromosomes (rs81476910 and rs81405825 on SSC8; rs81332615 on SSC13) for total number of teats. Besides, we estimated that 30% of variance could be explained by all of the common SNPs on the autosomal chromosomes for the trait. The maximum amount of heritability obtained by partitioning the genome were 0.22±0.05, 0.16±0.05, 0.10±0.03 and 0.08±0.03 on SSC7, SSC13, SSC1, and SSC8, respectively. Of them, SSC7 explained the amount of estimated heritability along with a SNP (rs80805264) identified by genome-wide association studies at the empirical p value significance level of 2.35E-05 in our study. Interestingly, rs80805264 was found in a nearby quantitative trait loci (QTL) on SSC7 for the teat number trait as identified in a recent study. Moreover, all other significant SNPs were found within and/or close to some QTLs related to ovary weight, total number of born alive and age at puberty in pigs. CONCLUSION: The SNPs we identified unquestionably represent some of the important QTL regions as well as genes of interest in the genome for various physiological functions responsible for reproduction in pigs.

5.
Mol Biol Rep ; 43(9): 1011-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27350214

RESUMEN

The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P < 0.020) and moisture percentage (MP, P < 0.002). Moreover, haplotype 2 was associated with meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.


Asunto(s)
Carne/normas , Proteínas del Tejido Nervioso/genética , Adiposidad , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Femenino , Calidad de los Alimentos , Expresión Génica , Estudios de Asociación Genética , Haplotipos , Masculino , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sus scrofa/genética
7.
BMC Genomics ; 16: 130, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25765548

RESUMEN

BACKGROUND: Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication. RESULTS: Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an F ST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness. CONCLUSIONS: We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.


Asunto(s)
Cruzamiento , Mapeo Cromosómico , Genoma , Selección Genética , Animales , Animales Domésticos/genética , Haplotipos/genética , Metabolómica , Polimorfismo de Nucleótido Simple/genética , Receptores de Glutamato Metabotrópico/genética , Reproducción , Análisis de Secuencia de ADN , Sus scrofa/genética , Porcinos
8.
Twin Res Hum Genet ; 17(2): 121-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24618045

RESUMEN

Hallux valgus (HV) is a common foot deformity of multifactorial etiology, but knowledge about the relative importance of genetics and environments on HV has been limited. In order to estimate genetic influences on HV, 1,265 adults, including 175 monozygotic twin (MZ) pairs, 31 dizygotic twin (DZ) pairs, and 853 first-degree singleton family members of the twins were included from the Healthy Twin study, a population-based twin-family cohort in Korea. All participants underwent foot examination and weight-bearing radiographic assessment (anterior-posterior and lateral) in addition to a general health survey. Of the subjects, 208 (16.4%) were classified as HV (as HV angle >20°). The genetic influence on HV was estimated to be substantial; the heritability of HV was 0.51 (95% CI 0.42-0.59) and the heritability of HV angle was 0.47 (0.38-0.56), while contributions from shared environmental effects were negligible. These findings suggest that genetic factors play an important role in determining HV deformity.


Asunto(s)
Pueblo Asiatico/genética , Hallux Valgus/epidemiología , Hallux Valgus/genética , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto , Femenino , Hallux Valgus/diagnóstico por imagen , Humanos , Masculino , Radiografía , República de Corea
9.
Asian-Australas J Anim Sci ; 27(9): 1263-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25178369

RESUMEN

Comprehensive information on genetic diversity and introgression is desirable for the design of rational breed improvement and conservation programs. Despite the concerns regarding the genetic introgression of Western pig breeds into the gene pool of the Korean native pig (KNP), the level of this admixture has not yet been quantified. In the present study, we genotyped 93 animals, representing four Western pig breeds and KNP, using the porcine SNP 60K BeadChip to assess their genetic diversity and to estimate the level of admixture among the breeds. Expected heterozygosity was the lowest in Berkshire (0.31) and highest in Landrace (0.42). Population differentiation (FST) estimates were significantly different (p<0.000), accounting for 27% of the variability among the breeds. The evidence of inbreeding observed in KNP (0.029) and Yorkshire (0.031) may result in deficient heterozygosity. Principal components one (PC1) and two (PC2) explained approximately 35.06% and 25.20% of the variation, respectively, and placed KNP somewhat proximal to the Western pig breeds (Berkshire and Landrace). When K = 2, KNP shared a substantial proportion of ancestry with Western breeds. Similarly, when K = 3, over 86% of the KNP individuals were in the same cluster with Berkshire and Landrace. The linkage disquilbrium (LD) values at r (2) 0.3, the physical distance at which LD decays below a threshold of 0.3, ranged from 72.40 kb in Landrace to 85.86 kb in Yorkshire. Based on our structure analysis, a substantial level of admixture between Western and Korean native pig breeds was observed.

10.
BMC Genomics ; 14: 519, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23899338

RESUMEN

BACKGROUND: Hanwoo (Korean cattle), which originated from natural crossbreeding between taurine and zebu cattle, migrated to the Korean peninsula through North China. Hanwoo were raised as draft animals until the 1970s without the introduction of foreign germplasm. Since 1979, Hanwoo has been bred as beef cattle. Genetic variation was analyzed by whole-genome deep resequencing of a Hanwoo bull. The Hanwoo genome was compared to that of two other breeds, Black Angus and Holstein, and genes within regions of homozygosity were investigated to elucidate the genetic and genomic characteristics of Hanwoo. RESULTS: The Hanwoo bull genome was sequenced to 45.6-fold coverage using the ABI SOLiD system. In total, 4.7 million single-nucleotide polymorphisms and 0.4 million small indels were identified by comparison with the Btau4.0 reference assembly. Of the total number of SNPs and indels, 58% and 87%, respectively, were novel. The overall genotype concordance between the SNPs and BovineSNP50 BeadChip data was 96.4%. Of 1.6 million genetic differences in Hanwoo, approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Among 1,045 genes containing reliable specific NS/SS/Is in Hanwoo, 109 genes contained more than one novel damaging NS/SS/I. Of the genes containing NS/SS/Is, 610 genes were assigned as trait-associated genes. Moreover, 16, 78, and 51 regions of homozygosity (ROHs) were detected in Hanwoo, Black Angus, and Holstein, respectively. 'Regulation of actin filament length' was revealed as a significant gene ontology term and 25 trait-associated genes for meat quality and disease resistance were found in 753 genes that resided in the ROHs of Hanwoo. In Hanwoo, 43 genes were located in common ROHs between whole-genome resequencing and SNP chips in BTA2, 10, and 13 coincided with quantitative trait loci for meat fat traits. In addition, the common ROHs in BTA2 and 16 were in agreement between Hanwoo and Black Angus. CONCLUSIONS: We identified 4.7 million SNPs and 0.4 million small indels by whole-genome resequencing of a Hanwoo bull. Approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Additionally, we found 25 trait-associated genes for meat quality and disease resistance among 753 genes that resided in the ROHs of Hanwoo. These findings will provide useful genomic information for identifying genes or casual mutations associated with economically important traits in cattle.


Asunto(s)
Bovinos/genética , Genómica , Homocigoto , Análisis de Secuencia , Animales , Genotipo , Hibridación Genética , Mutación INDEL/genética , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética
11.
Mamm Genome ; 24(3-4): 151-63, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23543395

RESUMEN

Hanwoo, Korean native cattle, is indigenous to the Korean peninsula. They have been used mainly as draft animals for about 5,000 years; however, in the last 30 years, their main role has been changed to meat production by selective breeding which has led to substantial increases in their productivity. Massively parallel sequencing technology has recently made possible the systematic identification of structural variations in cattle genomes. In particular, copy number variation (CNV) has been recognized as an important genetic variation complementary to single-nucleotide polymorphisms that can be used to account for variations of economically important traits in cattle. Here we report genome-wide copy number variation regions (CNVRs) in Hanwoo cattle obtained by comparing the whole genome sequence of Hanwoo with Black Angus and Holstein sequence datasets. We identified 1,173 and 963 putative CNVRs representing 16.7 and 7.8 Mbp from comparisons between Black Angus and Hanwoo and between Holstein and Hanwoo, respectively. The potential functional roles of the CNVRs were assessed by Gene Ontology enrichment analysis. The results showed that response to stimulus, immune system process, and cellular component organization were highly enriched in the genic-CNVRs that overlapped with annotated cattle genes. Of the 11 CNVRs that were selected for validation by quantitative real-time PCR, 9 exhibited the expected copy number differences. The results reported in this study show that genome-wide CNVs were detected successfully using massively parallel sequencing technology. The CNVs may be a valuable resource for further studies to correlate CNVs and economically important traits in cattle.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN , Genoma , Animales , Cruzamiento , Mapeo Cromosómico , Genética de Población , Masculino , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , República de Corea , Análisis de Secuencia de ADN
13.
Asian-Australas J Anim Sci ; 26(11): 1523-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25049737

RESUMEN

To increase plumage color uniformity and understand the genetic background of Korean chickens, we performed a genome-wide association study of different plumage color in Korean native chickens. We analyzed 60K SNP chips on 279 chickens with GEMMA methods for GWAS and estimated the genetic heritability for plumage color. The estimated heritability suggests that plumage coloration is a polygenic trait. We found new loci associated with feather pigmentation at the genome-wide level and from the results infer that there are additional genetic effect for plumage color. The results will be used for selecting and breeding chicken for plumage color uniformity.

14.
BMC Genomics ; 13: 711, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23253381

RESUMEN

BACKGROUND: Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. RESULTS: We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. CONCLUSIONS: Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.


Asunto(s)
Cromosomas Humanos Par 2/genética , Genómica , Obesidad/genética , Carácter Cuantitativo Heredable , Porcinos/genética , Animales , Predisposición Genética a la Enfermedad/genética , Humanos
16.
Anim Biosci ; 35(11): 1808-1816, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36108700

RESUMEN

OBJECTIVE: The study of Hanwoo (Korean native cattle) has mainly been focused on meat quality and productivity. Recently the field of microbiome research has increased dramatically. However, the information on the microbiome in Hanwoo is still insufficient, especially relationship between vagina and feces. Therefore, the purpose of this study is to examine the microbial community characteristics by analyzing the 16S rRNA sequencing data of Hanwoo vagina and feces, as well as to confirm the difference and correlation between vaginal and fecal microorganisms. As a result, the goal is to investigate if fecal microbiome can be used to predict vaginal microbiome. METHODS: A total of 31 clinically healthy Hanwoo that delivered healthy calves more than once in Cheongju, South Korea were enrolled in this study. During the breeding season, we collected vaginal and fecal samples and sequenced the microbial 16S rRNA genes V3-V4 hypervariable regions from microbial DNA of samples. RESULTS: The results revealed that the phylum-level microorganisms with the largest relative distribution were Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria in the vagina, and Firmicutes, Bacteroidetes, and Spirochaetes in the feces, respectively. In the analysis of alpha, beta diversity, and effect size measurements (LefSe), the results showed significant differences between the vaginal and fecal samples. We also identified the function of these differentially abundant microorganisms by functional annotation analyses. But there is no significant correlation between vaginal and fecal microbiome. CONCLUSION: There is a significant difference between vaginal and fecal microbiome, but no significant correlation. Therefore, it is difficult to interrelate vaginal microbiome as fecal microbiome in Hanwoo. In a further study, it will be necessary to identify the genetic relationship of the entire microorganism between vagina and feces through the whole metagenome sequencing analysis and meta-transcriptome analysis to figure out their relationship.

17.
J Anim Sci ; 100(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074647

RESUMEN

Fat is involved in synthesizing fatty acids (FAs), FA circulation, and lipid metabolism. Various genetic studies have been conducted on porcine fat but understanding the growth and specific adipose tissue is insufficient. The purpose of this study is to investigate the epigenetic difference in abdominal fat according to the growth of porcine. The samples were collected from the porcine abdominal fat of different developmental stages (10 and 26 weeks of age). Then, the samples were sequenced using MBD-seq and RNA-seq for profiling DNA methylation and RNA expression. In 26 weeks of age pigs, differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified as 2,251 and 5,768, compared with 10 weeks of age pigs, respectively. Gene functional analysis was performed using GO and KEGG databases. In functional analysis results of DMGs and DEGs, immune responses such as chemokine signaling pathways, B cell receptor signaling pathways, and lipid metabolism terms such as PPAR signaling pathways and fatty acid degradation were identified. It is thought that there is an influence between DNA methylation and gene expression through changes in genes with similar functions. The effects of DNA methylation on gene expression were investigated using cis-regulation and trans-regulation analysis to integrate and interpret different molecular layers. In the cis-regulation analysis using 629 overlapping genes between DEGs and DMGs, immune response functions were identified, while in trans-regulation analysis through the TF-target gene network, the co-expression network of lipid metabolism-related functions was distinguished. Our research provides an understanding of the underlying mechanisms for epigenetic regulation in porcine abdominal fat with aging.


Fat is involved in the synthesis of new fatty acids (FAs), FA circulation, and lipid metabolism. Various genetic studies have been conducted on porcine fat but understanding the growth and specific adipose tissue is insufficient. The purpose of this study is to investigate the epigenetic difference in abdominal fat according to the growth of porcine. Modifications in DNA methylation and expression values were confirmed epigenetically with growth. Changed genes in each DNA and RNA showed identical trends in the function of immune response and lipid metabolism. The effects of DNA methylation on gene expression were investigated using cis-regulation (functional enrichment analysis of overlapping genes) and trans-regulation (transcription factor and target gene networking) analysis to integrate and interpret different molecular layers. Our research provides an understanding of the underlying mechanisms for epigenetic regulation in porcine abdominal fat with aging.


Asunto(s)
Epigénesis Genética , Perfilación de la Expresión Génica , Porcinos/genética , Animales , Perfilación de la Expresión Génica/veterinaria , Metilación de ADN , Metabolismo de los Lípidos/genética , Grasa Abdominal , Inmunidad , Transcriptoma
18.
Gene ; 838: 146735, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35835403

RESUMEN

Lymphoma is one of the most prevalent hematological cancers, accounting for 15-20 % of new cancer diagnoses in dogs. Therefore, this study aims to explore the important genes and pathways involved in canine lymphoma progression and understand the underlying molecular mechanisms using RNA sequencing. In this study, RNAs acquired from seven pairs of lymphoma and non-lymphoma blood samples were sequenced from different breeds of dogs. Sequencing reads were preprocessed, aligned with the reference genome, assembled and expressions were estimated through bioinformatics approaches. At a false discovery rate (FDR) < 0.05 and fold change (FC) ≥ 1.5, a total of 625 differentially expressed genes (DEGs) were identified between lymphoma and non-lymphoma samples, including 347 up-regulated DEGs such as SLC38A11, SCN3A, ZIC5 etc. and 278 down-regulated DEGs such as LOC475937, CSMD1, KRT14 etc. GO enrichment analysis showed that these DEGs were highly enriched for molecular function of ATP binding and calcium ion binding, cellular process of focal adhesion, and biological process of immune response, and defense response to virus. Similarly, KEGG pathways analysis revealed 11 significantly enriched pathways such as ECM-receptor interaction, cell cycle, PI3K-Akt signaling pathway, ABC transporters etc. In the protein-protein interaction (PPI) network, CDK1 was found to be a top hub gene with highest degree of connectivity. Three modules selected from the PPI network showed that canine lymphoma was highly associated with cell cycle, ECM-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy and RIG-I-like receptor signaling pathway. Overall, our findings highlighted new candidate therapeutic targets for further testing in canine lymphoma and facilitate the understanding of molecular mechanism of lymphoma's progression in dogs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas , Animales , Biología Computacional , Perros , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Fosfatidilinositol 3-Quinasas/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Transcriptoma
19.
Vet Immunol Immunopathol ; 231: 110147, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249263

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a causative pathogen of PRRS, one of the most economically disastrous swine diseases. Non-structural protein 1 (NSP1) of PRRSV consists of NSP1α and NSP1ß which exhibit papain like cysteine protease activity. Recent evidence demonstrates that PRRSV NSP1 may be participated in modulating host immunity, but very few host proteins were discovered as targets for NSP1. In this study, we used RNA-seq to investigate the functional role of PRRSV NSP1 in porcine alveolar macrophages, 3D4/31 cells. Compared to empty vector (mock) transfectant, NSP1, NSP1α, and NSP1ß expressing 3D4/31 cells displayed a total of 60 genes, 63 genes, and 80 genes as differentially expressed genes (DEGs), respectively. Most of DEGs are involved in early inflammatory responses including interleukin (IL)-17 signaling pathway, chemokine signaling pathway, tumor necrosis factor (TNF)-α signaling pathway, and cell adhesion molecules. Interestingly, PRRSV NSP1 expression in 3D4/31 cells decreased mRNA transcripts of Fosb and Gdf15 known to be involved in host cell signaling or host cell protection during inflammation. Therefore, PRRSV NSP1 might block the signaling involved in host immune surveillance. Further study is required to define the mechanism on how PRRSV NSP1 protein represses mRNA transcripts of specific host genes.


Asunto(s)
Regulación Viral de la Expresión Génica , Macrófagos Alveolares/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos/virología , Proteínas no Estructurales Virales/genética , Animales , Línea Celular , Clonación Molecular , Perfilación de la Expresión Génica/veterinaria , Macrófagos Alveolares/inmunología , Anotación de Secuencia Molecular , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , ARN Mensajero/metabolismo , ARN Viral , RNA-Seq/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo
20.
Animals (Basel) ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34438623

RESUMEN

We aimed to comprehensively understand the functional mechanisms of immunity, especially of the CD8+/- subsets of gamma delta (γδ) T cells, using an RNA-sequencing analysis. Herein, γδ T cells were obtained from bronchial lymph node tissues of 38-day-old (after weaning 10-day: D10) and 56-day-old (after weaning 28-day: D28) weaned pigs and sorted into CD8+ and CD8- groups. Differentially expressed genes (DEGs) were identified based on the CD8 groups at D10 and D28 time points. We confirmed 1699 DEGs between D10 CD8+ versus D10 CD8- groups and 1784 DEGs between D28 CD8+ versus D28 CD8- groups; 646 upregulated and 561 downregulated DEGs were common. The common upregulated DEGs were enriched in the cytokine-cytokine receptor interaction and T cell receptor (TCR) signaling pathway, and the common downregulated DEGs were enriched in the B cell receptor signaling pathway. Further, chemokine-related genes, interferon gamma, and CD40 ligand were involved in the cytokine-cytokine receptor interaction and TCR signaling pathway, which are associated with inter-regulation in immunity. We expect our results to form the basic data required for understanding the mechanisms of γδ T cells in pigs; however, further studies are required in order to reveal the dynamic changes in γδ T cells under pathogenic infections, such as those by viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA