Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; : e2310013, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477696

RESUMEN

Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low-power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)-based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo-synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx ) and Tellurium selenium oxide (TeSeOx )nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope-based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope-based transistor exhibits photosensory synaptic responses to UV-vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW-1 to 365 nm UV light. This result is among the highest reported for Te-heterostructure-based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm-2 ), potentially useful for optical neuromorphic computing.

2.
Chem Soc Rev ; 49(6): 1812-1866, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32100760

RESUMEN

The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.


Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Dispositivos Electrónicos Vestibles , Electrónica , Humanos
3.
Nano Lett ; 18(12): 7619-7627, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30474985

RESUMEN

In this study, Mo3Se3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo3Se3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 µg mL-1 of Mo3Se3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo3Se3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo3Se3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo3Se3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo3Se3- SCACs can overcome several critical limitations of most other nanomaterials.


Asunto(s)
Materiales Biomiméticos/química , Matriz Extracelular/química , Molibdeno/química , Selenio/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Adhesión Celular , Línea Celular , Proliferación Celular , Cristalización , Ratones , Modelos Moleculares , Ingeniería de Tejidos
4.
Small ; 13(46)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29045044

RESUMEN

Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm-2 at a current density of 0.1 mA cm-2 with a power density of more than 1600 W kg-1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance.

5.
Small ; 11(25): 3054-65, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25703808

RESUMEN

Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid-channel field-effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time-dependent behaviors of hybrid-channel FETs reveal a high sensitivity and selectivity toward the near-UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid-channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac ) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 10(10) and 4 × 10(10) per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 10(5) A W(-1) and 10(6) , respectively. Therefore, the hybrid-channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.

6.
Phys Chem Chem Phys ; 16(9): 4098-105, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24448397

RESUMEN

One of the most significant issues that occurs when applying chemical-vapor deposited (CVD) graphene (Gr) to various high-performance device applications is the result of polymeric residues. Polymeric residues remain on the Gr surface during Gr polymer support transfer to an arbitrary substrate, and these residues degrade CVD Gr electrical properties. In this paper, we propose that a thin layer of gold be used as a CVD Gr transfer layer, instead of a polymer support layer, to enable a polymer residue-free transfer. Comparative investigation of the surface morphological and qualitative analysis of residues on Gr surfaces and Gr field-effect transistors (GFETs) using two transfer methods demonstrates that gold-transferred Gr, with uniform, smooth, and clean surfaces, enable GFETs to perform better than Gr transferred by the polymer, polymethylmethacrylate (PMMA). In GFETs fabricated by the gold transfer method, field-effect carrier mobility was greatly enhanced and the position of the Dirac point was significantly reduced compared to GFETs fabricated by the PMMA transfer method. In addition, compared to the PMMA-transferred GFETs, the gold-transferred GFETs showed greatly increased stability with smaller hysteresis and higher resistance to gate bias stress effects. These results suggest that the gold transfer method for Gr provides significant improvements in GFET performance and reliability by minimizing the polymeric residues and defects on Gr.


Asunto(s)
Oro/química , Grafito/química , Polimetil Metacrilato/química , Conductividad Eléctrica , Espectrometría Raman , Transistores Electrónicos
7.
J Nanosci Nanotechnol ; 14(12): 9470-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25971085

RESUMEN

Pulse-biased plasma etching of various dielectric layers is investigated for patterning nano-scale, multi-level resist (MLR) structures composed of multiple layers via dual-frequency, capacitively-coupled plasmas (CCPs). We compare the effects of pulse and continuous-wave (CW) biasing on the etch characteristics of a Si3N4 layer in CF4/CH2F2/O2/Aretch chemistries using a dual-frequency, superimposed CCP system. Pulse-biasing conditions using a low-frequency power source of 2 MHz were varied by controlling duty ratio, period time, power, and the gas flow ratio in the plasmas generated by the 27.12 MHz high-frequency power source. Application of pulse-biased plasma etching significantly affected the surface chemistry of the etched Si3N4 surfaces, and thus modified the etching characteristics of the Si3N4 layer. Pulse-biased etching was successfully applied to patterning of the nano-scale line and space pattern of Si3N4 in the MLR structure of KrF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer/Si3N4. Pulse-biased etching is useful for tuning the patterning of nano-scale dielectric hard-mask layers in MLR structures.


Asunto(s)
Nanotecnología , Gases em Plasma , Compuestos de Silicona/química
8.
Biomater Res ; 28: 0030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947863

RESUMEN

Electro-mechanical co-stimulation of cells can be a useful cue for tissue engineering. However, reliable co-stimulation platforms still have limitations due to low durability of the components and difficulty in optimizing the stimulation parameters. Although various electro-mechanical co-simulation systems have been explored, integrating materials and components with high durability is still limited. To tackle this problem, we designed an electro-mechanical co-stimulation system that facilitates uniaxial cyclic stretching, electrical stimulation, and optical monitoring. This system utilizes a robust and autoclavable stretchable multielectrode array housed within a compact mini-incubator. To illustrate its effectiveness, we conducted experiments that highlighted how electro-mechanical co-stimulation using this system can enhance the maturation of cardiomyocytes derived from human induced pluripotent stem cells. The results showed great potential of our co-stimulation platform as an effective tool for tissue engineering.

9.
Adv Mater ; : e2403150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699932

RESUMEN

In the era of artificial intelligence (AI), there is a growing interest in replicating human sensory perception. Selective and sensitive bio-inspired sensory receptors with synaptic plasticity have recently gained significant attention in developing energy-efficient AI perception. Various bio-inspired sensory receptors and their applications in AI perception are reviewed here. The critical challenges for the future development of bio-inspired sensory receptors are outlined, emphasizing the need for innovative solutions to overcome hurdles in sensor design, integration, and scalability. AI perception can revolutionize various fields, including human-machine interaction, autonomous systems, medical diagnostics, environmental monitoring, industrial optimization, and assistive technologies. As advancements in bio-inspired sensing continue to accelerate, the promise of creating more intelligent and adaptive AI systems becomes increasingly attainable, marking a significant step forward in the evolution of human-like sensory perception.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38604985

RESUMEN

Challenges such as poor dispersion and insufficient polarization of BaTiO3 (BTO) nanoparticles (NPs) within poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) composites have hindered their piezoelectricity, limiting their uses in pressure sensors, nanogenerators, and artificial sensory synapses. Here, we introduce a high-performance piezoelectric nanocomposite material consisting of P(VDF-TrFE)/modified-BTO (mBTO) NPs for use as a self-activating component in a piezotronic artificial mechanoreceptor. To generate high-performance piezoelectric nanocomposite materials, the surface of BTO is hydroxylated, followed by the covalent attachment of (3-aminopropyl)triethoxysilane to improve the dispersibility of mBTO NPs within the P(VDF-TrFE) matrix. We also aim to enhance the crystallization degree of P(VDF-TrFE), the efficiency characteristics of mBTO, and the poling efficiency, even when incorporating small amounts of mBTO NPs. The piezoelectric potential mechanically induced from the P(VDF-TrFE)/mBTO NPs nanocomposite was three times greater than that from P(VDF-TrFE) and twice as high as that from the P(VDF-TrFE)/BTO NPs nanocomposite. The piezoelectric potential generated by mechanical stimuli on the piezoelectric nanocomposite was utilized to activate the synaptic ionogel-gated field-effect transistor for the development of self-powered piezotronics artificial mechanoreceptors on a polyimide substrate. The device successfully emulated fast-adapting (FA) functions found in biological FA mechanoreceptors. This approach has great potential for applications to future intelligent tactile perception technology.

11.
Biosens Bioelectron ; 248: 115987, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176256

RESUMEN

Point-of-care testing (POCT) for low-concentration protein biomarkers remains challenging due to limitations in biosensor sensitivity and platform integration. This study addresses this gap by presenting a novel approach that integrates a metal-enhanced fluorescence (MEF) biosensor within a capillary flow-driven microfluidic cartridge (CFMC) for the ultrasensitive detection of the Parkinson's disease biomarker, aminoacyl-tRNA synthetase complex interacting multi-functional protein 2 (AIMP-2). Crucial point to this approach is the orientation-controlled immobilization of capture antibody on a nanodimple-structured MEF substrate within the CFMC. This strategy significantly enhances fluorescence signals without quenching, enabling accurate quantification of low-concentration AIMP-2 using a simple digital fluorescence microscope with a light-emitting diode excitation source and a digital camera. The resulting platform exhibits exceptional sensitivity, achieving a limit of detection in the pg/mL range for AIMP-2 in human serum. Additionally, the CFMC design incorporates a capillary-driven passive sample transport mechanism, eliminating the need for external pumps and further simplifying the detection process. Overall, this work demonstrates the successful integration of MEF biosensing with capillary microfluidics for point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Humanos , Microfluídica , Técnicas Biosensibles/métodos , Técnicas Analíticas Microfluídicas/métodos , Inmunoensayo/métodos , Biomarcadores , Oro
12.
Small ; 9(19): 3352-60, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23589198

RESUMEN

Detection of the anthrax toxin, the protective antigen (PA), at the attomolar (aM) level is demonstrated by an electrical aptamer sensor based on a chemically derived graphene field-effect transistor (FET) platform. Higher affinity of the aptamer probes to PA in the aptamer-immobilized FET enables significant improvements in the limit of detection (LOD), dynamic range, and sensitivity compared to the antibody-immobilized FET. Transduction signal enhancement in the aptamer FET due to an increase in captured PA molecules results in a larger 30 mV/decade shift in the charge neutrality point (Vg,min ) as a sensitivity parameter, with the dynamic range of the PA concentration between 12 aM (LOD) and 120 fM. An additional signal enhancement is obtained by the secondary aptamer-conjugated gold nanoparticles (AuNPs-aptamer), which have a sandwich structure of aptamer/PA/aptamer-AuNPs, induce an increase in charge-doping in the graphene channel, resulting in a reduction of the LOD to 1.2 aM with a three-fold increase in the Vg,min shift.

13.
J Nanosci Nanotechnol ; 13(12): 8002-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24266180

RESUMEN

During the operational service of flexible electronic systems, component devices are subject to not only mechanical deformation but also environmental stimulation such as temperature and humidity. Therefore, the stability of flexible devices under simultaneous loading of multi-variable environmental factors including mechanical deformation needs to be studied. In this work, changes in device characteristics under simultaneous mechanical bending and heating of organic thin film transistors (OTFTs) were investigated in a mechanical bending system having capability of substrate heating. Simultaneous loading of mechanical deformation and heating of OTFTs accelerated the change of device characteristics such as field-effect mobility, threshold voltage, and subthreshold swing at elevated temperature. The results indicate that the stability of flexible devices under multi-variable loading needs to be tested for better understanding of the electrical behaviours of device characteristics in flexible electronics.

14.
J Nanosci Nanotechnol ; 13(12): 8041-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24266188

RESUMEN

Both the formation of self-formed barrier (SFB) of Mn oxide on porous low dielectric constant (low-k) SiOCH trench and Cu filling (MOCVD) in order were carried out by in-situ metal organic chemical vapor deposition to make Cu interconnect. Oxygen-plasma pretreatment of the low-k dielectrics surface enhanced the uniformity of deposited Mn layers as well as the formation of SFB prior to Cu MOCVD. X-ray photoelectron spectroscopy confirmed the presence of amorphous MnOx and MnSi(y)Oz layers in SFB. Electron energy loss spectroscopy (EELS) measurements of cross-sectional samples of the deposited layers on porous low-k blanket and trench surfaces enabled in-depth analysis of the elemental composition of the Cu/SFB multilayers with high spatial resolution. The effectiveness of the SFB layer in protecting Cu diffusion into the low-k layer was proven by EELS and energy dispersive X-ray spectroscopy (EDX) analyses. The Mn L3/L2 intensity ratio from EELS data enabled us to identify the possible compounds of the SFB layers including MnSiO3 near the dielectric surface, Mn2O3 near the Cu layer, and Mn3O4 at the intermediate region.

15.
ACS Appl Mater Interfaces ; 15(18): 21754-21765, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104719

RESUMEN

Existing affinity-based fluorescence biosensing systems for monitoring of biomarkers often utilize a fixed solid substrate immobilized with capture probes limiting their use in continuous or intermittent biomarker detection. Furthermore, there have been challenges of integrating fluorescence biosensors with a microfluidic chip and low-cost fluorescence detector. Herein, we demonstrated a highly efficient and movable fluorescence-enhanced affinity-based fluorescence biosensing platform that can overcome the current limitations by combining fluorescence enhancement and digital imaging. Fluorescence-enhanced movable magnetic beads (MBs) decorated with zinc oxide nanorods (MB-ZnO NRs) were used for digital fluorescence-imaging-based aptasensing of biomolecules with improved signal-to-noise ratio. High stability and homogeneous dispersion of photostable MB-ZnO NRs were obtained by grafting bilayered silanes onto the ZnO NRs. The ZnO NRs formed on MB significantly improved the fluorescence signal up to 2.35 times compared to the MB without ZnO NRs. Moreover, the integration of a microfluidic device for flow-based biosensing enabled continuous measurements of biomarkers in an electrolytic environment. The results showed that highly stable fluorescence-enhanced MB-ZnO NRs integrated with a microfluidic platform have significant potential for diagnostics, biological assays, and continuous or intermittent biomonitoring.


Asunto(s)
Microfluídica , Óxido de Zinc , Bioensayo , Biomarcadores , Dispositivos Laboratorio en un Chip
16.
Nat Commun ; 14(1): 821, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788242

RESUMEN

The human olfactory system comprises olfactory receptor neurons, projection neurons, and interneurons that perform remarkably sophisticated functions, including sensing, filtration, memorization, and forgetting of chemical stimuli for perception. Developing an artificial olfactory system that can mimic these functions has proved to be challenging. Herein, inspired by the neuronal network inside the glomerulus of the olfactory bulb, we present an artificial chemosensory neuronal synapse that can sense chemical stimuli and mimic the functions of excitatory and inhibitory neurotransmitter release in the synapses between olfactory receptor neurons, projection neurons, and interneurons. The proposed device is based on a flexible organic electrochemical transistor gated by the potential generated by the interaction of gas molecules with ions in a chemoreceptive ionogel. The combined use of a chemoreceptive ionogel and an organic semiconductor channel allows for a long retentive memory in response to chemical stimuli. Long-term memorization of the excitatory chemical stimulus can be also erased by applying an inhibitory electrical stimulus due to ion dynamics in the chemoresponsive ionogel gate electrolyte. Applying a simple device design, we were able to mimic the excitatory and inhibitory synaptic functions of chemical synapses in the olfactory system, which can further advance the development of artificial neuronal systems for biomimetic chemosensory applications.


Asunto(s)
Neuronas Receptoras Olfatorias , Sinapsis , Humanos , Sinapsis/fisiología , Transmisión Sináptica , Bulbo Olfatorio/fisiología , Interneuronas/fisiología
17.
Biosens Bioelectron ; 237: 115468, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343311

RESUMEN

Wearable point-of-care testing devices are essential for personalized and decentralized healthcare. They can collect biofluid samples from the human body and use an analyzer to detect biomolecules. However, creating an integrated system is challenging due to the difficulty of achieving conformality to the human body, regulating the collection and transport of biofluids, developing a biosensor patch capable of precise biomolecule detection, and establishing a simple operation protocol that requires minimal wearer attention. In this study, we propose using a hollow microneedle (HMN) based on soft hollow microfibers and a microneedle-integrated microfluidic biosensor patch (MIMBP) capable of integrated blood sampling and electrochemical biosensing of biomolecules. The soft MIMBP includes a stretchable microfluidic device, a flexible electrochemical biosensor, and a HMN array made from flexible hollow microfibers. The HMNs are fabricated by electroplating flexible and mechanically durable hollow microfibers made from a nanocomposite matrix of polyimide, a poly (vinylidene fluoride-co-trifluoroethylene) copolymer, and single-walled carbon nanotubes. The MIMBP uses the negative pressure generated by a single button push to collect blood and deliver it to a flexible electrochemical biosensor modified with a gold nanostructure and Pt nanoparticles. We have demonstrated that glucose can be accurately measured up to the molar range in whole human blood collected through the microneedle. The MIMBP platform with HMNs has great potential as a foundation for the future development of simple, wearable, self-testing systems for minimally invasive biomolecule detection. This platform capable of sequential blood collection and high sensitivity glucose detection, which are ideal for personalized and decentralized healthcare.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/métodos , Microfluídica , Glucosa
18.
Int J Biol Macromol ; 234: 123725, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822151

RESUMEN

Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes. This study reports a novel approach for developing a chitosan-reinforced anti-freezing ionic conductive gelatin hydrogel to meet these demands. Immersion of chitosan-containing gelatin hydrogels in salt solutions caused chitosan precipitation, resulting in composite hydrogels. The precipitated chitosan contributes to the reinforcement of the gelatin hydrogel network, resulting in a high mechanical toughness of up to 3.81 MJ/m3, a fracture energy of 26 kJ/m2, anti-freezing properties (below -30 °C), and excellent flame retardancy without softening. Furthermore, the hydrogel exhibits excellent electrochemical performance, with an ionic conductivity ranging from 72 mS/cm at room temperature (26 °C) to 39 mS/cm at -30 °C. The proposed hydrogel exhibits potential for use in SSC as a gel polymer electrolyte. This study demonstrates a novel strategy for controlling the mechanical, thermal, and electrochemical characteristics of flexible supercapacitors using biological macromolecules.


Asunto(s)
Quitosano , Retardadores de Llama , Gelatina , Hidrogeles , Electrólitos , Polímeros
19.
J Nanosci Nanotechnol ; 12(4): 3334-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849119

RESUMEN

Among the core EUVL (extreme ultra-violet lithography) technologies for nanoscale patterning below the 30 nm node for Si chip manufacturing, new materials and fabrication processes for high-performance EUVL masks are of considerable importance due to the use of new reflective optics. In this work, the selective etching of SnO2 (tin oxide) as a new absorber material, with high EUV absorbance due to its large extinction coefficient, for the binary mask structure of SnO2 (absorber layer)/Ru (capping/etch stop layer)/Mo-Si multilayer (reflective layer)/Si (substrate), was investigated. Because infinitely high selectivity of the SnO2 layer to the Ru ESL is required due to the ultrathin nature of the Ru layer, various etch parameters were assessed in the inductively coupled Cl2/Ar plasmas in order to find the process window required for infinitely high etch selectivity of the SnO2 layer. The results showed that the gas flow ratio and V(dc) value play an important role in determining the process window for the infinitely high etch selectivity of SnO2 to Ru ESL. The high EUV-absorbance SnO2 layer, patternable by a dry process, allows a smaller absorber thickness, which can mitigate the geometric shadowing effects observed for high-performance binary EUVL masks.

20.
Nanoscale ; 14(13): 5102-5111, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35297929

RESUMEN

Stretchable broadband photodetectors (PDs) are attractive for applications in wearable optoelectronics and personal healthcare. However, the development of stretchable broadband PDs is limited by difficulties in obtaining materials, designing device structures, and finding reliable fabrication processes. Here, we report stretchable broadband PDs by forming organic-inorganic vertical multiheterojunctions on a three-dimensionally micro-patterned stretchable substrate (3D-MPSS). The stress-adaptable 3D-MPSS structure allows all layers of the PD coated on it to sustain tensile strains. Generation of photovoltage in the vertical hybrid structure of PbS quantum dots/ZnO nanorods as a photo-responsive material on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) as a transport channel is considred to be the mechanism of the device response to UV-Vis-NIR. The fabricated PDs present responsivity to UV (365 nm), Vis (565 nm and 660 nm), and NIR (880 nm and 970 nm) light, as well as reliable electrical performance under applied stretching up to 30%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA