Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Spine J ; 31(5): 1260-1272, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325298

RESUMEN

PURPOSE: Our study aimed to evaluate non-inferiority of ProDisc-C to anterior cervical discectomy and fusion (ACDF) in terms of clinical outcomes and incidence of adjacent segment disease (ASD) at 24-months post-surgery in Asian patients with symptomatic cervical disc disease (SCDD). METHODS: This multicentre, prospective, randomized controlled trial was initiated after ethics committee approval at nine centres (China/Hong Kong/Korea/Singapore/Taiwan). Patients with single-level SCDD involving C3-C7-vertebral segments were randomized (2:1) into: group-A treated with ProDisc-C and group-B with ACDF. Assessments were conducted at baseline, 6-weeks, 3/6/12/18/24-months post-surgery and annually thereafter till 84-months. Primary endpoint was overall success at 24-months, defined as composite of: (1) ≥ 20% improvement in neck disability index (NDI); (2) maintained/improved neurologic parameters; (3) no implant removal/revision/re-operation at index level; and (4) no adverse/severe/life-threatening events. RESULTS: Of 120 patients (80ProDisc-C,40ACDF), 76 and 37 were treated as per protocol (PP). Overall success (PP) was 76.5% in group-A and 81.8% in group-B at 24-months (p = 0.12), indicating no clear non-inferiority of ProDisc-C to ACDF. Secondary outcomes improved for both groups with no significant inter-group differences. Occurrence of ASD was higher in group-B with no significant between-group differences. Range of motion (ROM) was sustained with ProDisc-C but lost with ACDF at 24-months. CONCLUSION: Cervical TDR with ProDisc-C is feasible, safe, and effective for treatment of SCDD in Asians. No clear non-inferiority was demonstrated between ProDisc-C and ACDF. However, patients treated with ProDisc-C demonstrated significant improvement in NDI, neurologic success, pain scores, and 36-item-short-form survey, along with ROM preservation at 24-months. Enrolment difficulties resulted in inability to achieve pre-planned sample size to prove non-inferiority. Future Asian-focused, large-scale studies are needed to establish unbiased efficacy of ProDisc-C to ACDF.


Asunto(s)
Degeneración del Disco Intervertebral , Fusión Vertebral , Reeemplazo Total de Disco , Pueblo Asiatico , Vértebras Cervicales/cirugía , Discectomía/métodos , Estudios de Seguimiento , Humanos , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral , Estudios Prospectivos , Rango del Movimiento Articular , Fusión Vertebral/métodos , Reeemplazo Total de Disco/métodos , Resultado del Tratamiento
2.
Acc Chem Res ; 51(1): 97-106, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29293316

RESUMEN

In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous interface for ion insertion and extraction, (2) providing mechanical constraints to maintain structural integrity and robust electronic and ionic conduction pathways, and (3) introducing spatial confinements on the electrode material matrix to alter the phase transformation (delaying the occurrence of the conversion reaction) upon Li insertion, which results in superior electrode performance, excellent capacity retention, and improved reversibility. Taken together, these examples portray a valuable role for thin protection layers synthesized over electrode surfaces, both for their benefit to cycle stability and for revealing insights into degradation and mitigation mechanisms. Furthermore, they underscore the impact of complex electrochemical behavior at nanoscale materials and nanostructure interfaces in modulating the behavior of energy storage devices at the mesoscale and macroscale.

3.
Anal Bioanal Chem ; 410(11): 2805-2813, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29492621

RESUMEN

Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM). Measurements were performed using a matrix-matched calibration system. NIST SRM 2921 Human Cardiac Troponin Complex acted as the calibrant and a full-length isotopically labeled protein analog of cTnI was used as an internal standard. The method was successfully demonstrated on five patient plasma samples, with cTnI concentrations measuring between 4.86 µg/L and 11.3 µg/L (signifying moderate myocardial infarctions). LC-MS/MS measurement precision was validated by three unique peptides from cTnI and two MRM transitions per peptide. Relative standard deviation (CV) from the five plasma samples was determined to be ≤14.3%. This study has demonstrated that quantification of cTnI in native plasma from myocardial infarction patients can be achieved based on an ID-LC-MS/MS method. The development of an ID-LC-MS/MS method for cTnI in plasma is a first step for future certification of matrix-based reference materials, which may be used to help harmonize discordant cTnI clinical assays. Graphical abstract A schematic of the workflow for measuring cardiac troponin I (cTnI), a low-abundant protein biomarker used for diagnosing myocardial infarction, in human plasma by isotope-dilution LC-MS/MS analysis.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Troponina I/sangre , Secuencia de Aminoácidos , Anticuerpos Inmovilizados/química , Biomarcadores/análisis , Biomarcadores/sangre , Humanos , Técnicas de Inmunoadsorción , Límite de Detección , Nanopartículas de Magnetita/química , Infarto del Miocardio/sangre , Péptidos/análisis , Péptidos/sangre , Troponina I/análisis
4.
Phys Chem Chem Phys ; 20(47): 29708-29716, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30460940

RESUMEN

Considering the tortuous, random porous nanostructures existing in many battery electrodes, it is essential to understand electronic and ionic behaviors in such a confined nanoscale porous geometry in which electron and ion transports can change dynamically. Here, we have carefully designed three dimensional (3D) interconnected porous electrode structures and performed experiments to probe how the ion and electron transport is impacted within these controlled geometries. By using anodized aluminum oxide as a template, we were able to fabricate both 1D array electrodes and 3D electrodes with varying numbers of interconnections, utilizing vanadium oxide (V2O5) as the active material. We demonstrate that the inherent properties of the electrode material in combination with the structural properties of the electrodes can both positively and negatively impact electrochemical characteristics. Most notably, electrodes with seven interconnecting layers in their structure had 19.7% less capacity at 25C than electrodes with zero interconnecting layers, demonstrating the negative effect of interconnections combined with poor electronic conductivity of V2O5 upon lithiation beyond one Li insertion. These results indicate that a careful consideration of the material and structural properties is needed for the design of high performance battery systems.

5.
Phys Chem Chem Phys ; 20(4): 2517-2526, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29313861

RESUMEN

Batteries based on magnesium chemistry are being widely investigated as an alternative energy storage system to replace lithium-ion batteries. Mg batteries have multiple challenges, especially on the cathode side. The divalent Mg ion has slow insertion kinetics in many metal oxide cathodes conventionally used in Li-ion batteries. One solution that has been explored is adding water molecules into an organic electrolyte, which has been shown to aid in Mg insertion and improve performance of manganese oxide (MnO2) cathodes. While there have been studies on Mg insertion mechanisms into MnO2 in solely aqueous or organic electrolytes for some crystalline MnO2 polymorphs, our work is focused on water-containing organic electrolyte, where an H2O to Mg ratio of 6 : 1 is present. In this study, we report results based on ex situ XPS experiments, including both angle resolved and depth profiling studies to assess the surface reactions and determine the mechanism of Mg insertion into an amorphous, electrodeposited MnO2 cathode. We propose that in this mixed electrolyte system, there is a combined insertion/conversion reaction mechanism whereby Mg and H2O molecules co-insert into the MnO2 structure and a reaction between H2O and Mg creates an observable Mg(OH)2 layer at the surface of the MnO2. A more full understanding of the role of the water molecules is important to aid in the future design of cathode materials, especially when determining potential ways to integrate metal oxides in Mg batteries.

6.
Acc Chem Res ; 49(10): 2336-2346, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27636834

RESUMEN

Conventional electrical energy storage (EES) electrodes, such as rechargeable batteries, are mostly based on composites of monolithic micrometer sized particles bound together with polymeric and conductive carbon additives and binders. The kinetic limitations of these monolithic chunks of material are inherently linked to their electrical properties, the kinetics of ion insertion through their interface and ion migration in and through the composite phase. Redox chemistry of nanostructured materials in EES systems offer vast gains in power and energy. Furthermore, due to their thin nature, ion and electron transport is dramatically increased, especially when thin heterogeneous conducting layers are employed synergistically. However, since the stability of the electrode material is dictated by the nature of the electrochemical reaction and the accompanying volumetric and interfacial changes from the perspective of overall system lifetime, research with nanostructured materials has shown often indefinite conclusions: in some cases, an increase in unwanted side-reactions due to the high surface area (bad). In other cases, results have shown significantly better handling of mechanical stress that results from lithiation/delithiation (good). Despite these mixed results, scientifically informed design of thin electrode materials, with carefully chosen architectures, is considered a promising route to address many limitations witnessed in EES systems by reducing and protecting electrodes from parasitic reactions, accommodating mechanical stress due to volumetric changes from electrochemical reactions, and optimizing charge carrier mobilities from both the "ionic" and "electronic" points of view. Furthermore, precise nanoscale control over the electrode structure can enable accurate measurement through advanced spectroscopy and microscopy techniques. This Account summarizes recent findings related to thin electrode materials synthesized by atomic layer deposition (ALD) and electrochemical deposition (ECD), including nanowires, nanotubes, and thin films. Throughout the Account, we will show how these techniques enabled us to synthesize electrodes of interest with precise control over the structure and composition of the material. We will illustrate and discuss how the electrochemical response of thin electrodes made by these techniques can facilitate new mechanisms for ion storage, mediate the interfacial electrochemical response of the electrode, and address issues related to electrode degradation over time. The effects of nanosizing materials and their electrochemical response will be mechanistically reviewed through two categories of ion storage: (1) pseudocapacitance and (2) ion insertion. Additionally, we will show how electrochemical processes that are more complicated because of accompanying volumetric changes and electrode degradation pathways can be mediated and controlled by application of thin functional materials on the electrochemically active interface; examples include conversion electrodes, reactive lithium metal anodes, and complex reactions in a Li/O2 cathode system. The goal of this Account is to illustrate how careful design of thin materials either as active electrodes or as mediating layers can facilitate desirable interfacial electrochemical activity and resolve or shed light on mechanistic limitations of electrochemical processes related to micrometer size particles currently used in energy storage electrodes.

7.
Proc Natl Acad Sci U S A ; 111(40): 14342-7, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246585

RESUMEN

A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements.

8.
Nano Lett ; 16(9): 5875-82, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27518908

RESUMEN

Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

9.
Proteomics ; 16(13): 1881-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27193397

RESUMEN

A better understanding of molecular signaling between myeloid-derived suppressor cells (MDSC), tumor cells, T-cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor-bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro-inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom-up proteomic analysis to identify plasma membrane associated pro-inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency.


Asunto(s)
Inflamación/inmunología , Proteínas de la Membrana/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Animales , Calgranulina A/inmunología , Calgranulina B/inmunología , Movimiento Celular , Células Cultivadas , Cromatografía Líquida de Alta Presión , Inflamación/complicaciones , Ratones Endogámicos BALB C , Neoplasias/complicaciones , Proteómica , Espectrometría de Masas en Tándem
10.
Soft Matter ; 12(14): 3326-30, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26876379

RESUMEN

We studied the correlation between the molecular structure and the formation of helical nanofilaments (HNFs) of bent-core dimeric molecules with varying linkage lengths. To obtain precise structural data, a single domain of HNFs was prepared under physical confinement using porous 1D nanochannels, made up of anodic aluminium oxide films. Electron microscopy and grazing incidence X-ray diffraction were used to elucidate the linkage length-dependent formation of HNFs.

11.
Anal Bioanal Chem ; 408(29): 8325-8332, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27695963

RESUMEN

Quantifying the amount of antibody on magnetic particles is a fundamental, but often overlooked step in the development of magnetic separation-based immunoaffinity enrichment procedures. In this work, a targeted mass spectrometry (MS)-based method was developed to directly measure the amount of antibody covalently bound to magnetic particles. Isotope-dilution liquid chromatography-tandem MS (ID-LC-MS/MS) has been extensively employed as a gold-standard method for protein quantification. Here, we demonstrate the utility of this methodology for evaluating different antibody coupling processes to magnetic particles of different dimensions. Synthesized magnetic nanoparticles and pre-functionalized microparticles activated with glutaraldehyde or epoxy surface groups were used as solid supports for antibody conjugation. The key steps in this quantitative approach involved an antibody-magnetic particle coupling process, a wash step to remove unreacted antibody, followed by an enzymatic digestion step (in situ with the magnetic particles) to release tryptic antibody peptides. Our results demonstrate that nanoparticles more efficiently bind antibody when compared to microparticles, which was expected due to the larger surface area per unit mass of the nanoparticles compared to the same mass of microparticles. This quantitative method is shown to be capable of accurately and directly measuring antibody bound to magnetic particles and is independent of the conjugation method or type of magnetic particle. Graphical Abstract Schematic illustration of the isotope-dilution mass spectrometry-based workflow to directly measure antibody bound to magnetic particles (MP).


Asunto(s)
Anticuerpos Inmovilizados/análisis , Cromatografía de Afinidad/métodos , Nanopartículas de Magnetita/química , Espectrometría de Masas en Tándem/métodos , Anticuerpos Inmovilizados/inmunología , Biomarcadores/análisis , Compuestos Epoxi/química , Tamaño de la Partícula , Péptidos/análisis , Dióxido de Silicio/química , Propiedades de Superficie
12.
Phys Chem Chem Phys ; 18(28): 19093-102, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27357533

RESUMEN

Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

13.
Phys Chem Chem Phys ; 18(44): 30605-30611, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27786319

RESUMEN

Here we introduce a strategy for creating nanotube array electrodes which feature periodic regions of porous interconnections providing open pathways between adjacent nanotubes within the array, utilizing a combination of anodized aluminum oxide growth modification (AAO) and atomic layer deposition. These porous interconnected structures can then be used as testbed electrodes to explore the influence of mesoscale structure on the electrochemical properties of the interconnected mesoporous electrodes. Critically, these unique structures allow the solid state lithium diffusion pathways to be held essentially constant, while the larger structure is modified. While it was anticipated that this strategy would simply provide increased mass loading, the kinetics of the Li+ ion insertion reaction in the porous interconnected electrodes are dramatically improved, demonstrating significantly better capacity retention at high rates than their aligned counterparts. We utilize a charge deconvolution method to explore the kinetics of the charge storage reactions. We are able to trace the origin of the structural influence on rate performance to electronic effects within the electrodes.

14.
Knee Surg Sports Traumatol Arthrosc ; 24(1): 129-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25288336

RESUMEN

PURPOSE: The objectives of this study were (1) to evaluate the clinical and radiologic outcomes of open-wedge high tibial osteotomy focusing on patellofemoral alignment and (2) to search for correlation between variables and patellofemoral malalignment. METHODS: A total of 46 knees (46 patients) from 32 females and 14 males who underwent open-wedge high tibial osteotomy were included in this retrospective case series. Outcomes were evaluated using clinical scales and radiologic parameters at the last follow-up. Pre-operative and final follow-up values were compared for the outcome analysis. For the focused analysis of the patellofemoral joint, correlation analyses between patellofemoral variables and pre- and post-operative weight-bearing line (WBL), clinical score, posterior slope, Blackburn Peel ratio, lateral patellar tilt, lateral patellar shift, and congruence angle were performed. RESULTS: The minimum follow-up period was 2 years and median follow-up period was 44 months (range 24-88 months). The percentage of weight-bearing line was shifted from 17.2 ± 11.1 to 56.7 ± 12.7%, and it was statistically significant (p < 0.01). Regarding the clinical results, statistical significance was observed using all scores (p < 0.01). In the radiologic evaluation, patellar descent was observed with statistical significance (p < 0.01). Last follow-up lateral patellar tilt was decreased with statistical significance (p < 0.01). In correlation analysis between variables of patellofemoral malalignment, the pre-operative weight-bearing line showed an association with the change in lateral patellar tilt and lateral patellar shift (correlation coefficient: 0.3). CONCLUSION: After open-wedge high tibial osteotomy, clinical results showed improvement, compared to pre-operative values. The patellar tilt and lateral patellar shift were not changed; however, descent of the patella was observed. Therefore, mild patellofemoral problems should not be a contraindication of the open-wedge high tibial osteotomy. LEVEL OF EVIDENCE: Case series, Level IV.


Asunto(s)
Osteoartritis de la Rodilla/cirugía , Osteotomía/métodos , Articulación Patelofemoral/cirugía , Tibia/cirugía , Adulto , Anciano , Desviación Ósea/fisiopatología , Desviación Ósea/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/fisiopatología , Estudios Retrospectivos , Tibia/fisiopatología , Resultado del Tratamiento , Soporte de Peso
15.
Angew Chem Int Ed Engl ; 55(34): 9898-901, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27417442

RESUMEN

Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.

16.
J Am Chem Soc ; 137(38): 12388-93, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26360783

RESUMEN

Mg metal is a promising anode material for next generation rechargeable battery due to its dendrite-free deposition and high capacity. However, the best cathode for rechargeable Mg battery was based on high molecular weight MgxMo3S4, thus rendering full cell energetically uncompetitive. To increase energy density, high capacity cathode material like sulfur is proposed. However, to date, only limited work has been reported on Mg/S system, all plagued by poor reversibility attributed to the formation of electrochemically inactive MgSx species. Here, we report a new strategy, based on the effect of Li(+) in activating MgSx species, to conjugate a dendrite-free Mg anode with a reversible polysulfide cathode and present a truly reversible Mg/S battery with capacity up to 1000 mAh/gs for more than 30 cycles. Mechanistic insights supported by spectroscopic and microscopic characterization strongly suggest that the reversibility arises from chemical reactivation of MgSx by Li(+).

17.
Chemistry ; 21(14): 5387-94, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25684660

RESUMEN

Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM-mediated one-pot aqueous synthesis method for the production of single-crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM-stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC-based catalyst systems.

18.
Langmuir ; 31(29): 8156-61, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26135637

RESUMEN

We have investigated the various morphological changes of helical nanofilament (HNF; B4) phases in multiscale nanochannels made of porous anodic aluminum oxide (AAO) film. Single or multihelical structures could be manipulated depending on the AAO pore size and the higher-temperature phase of each molecule. Furthermore, the nanostructures of HNFs affected by the chemical affinity between the molecule and surface were drastically controlled in surface-modified nanochannels. These well-controlled hierarchical helical structures that have multidimensions can be a promising tool for the manipulation of chiral pores or the nonlinear optical applications.

19.
Soft Matter ; 11(39): 7778-82, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26313738

RESUMEN

The B4 helical nanofilament (HNF) liquid crystal (LC) phase is a three-dimensional (3D) helical structure composed of 2D smectic layers. Because of the complex shape of the HNF phase, it is difficult to understand the generation mechanism of HNFs in the bulk as well as in the thin-film condition. Here, we directly investigated the nucleation and growth of HNFs in nanobowls. A combination of electron microscopy and X-ray diffraction was used to reveal the transitional surface structures, in which barrel-like structures as well as short HNFs with random handedness were observed, depending on the LC film thickness. These results will be useful in achieving a better understanding of thin film structures of complex chiral structures in soft matter.

20.
Phys Chem Chem Phys ; 17(23): 15173-80, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25990197

RESUMEN

A wide range of metal oxides have been studied as pseudocapitors, with the goal of achieving higher power than traditional batteries and higher energy than traditional capacitors. However, most metal oxides have relatively low conductivity, and the few exceptions, like RuO2, are prohibitively expensive. Mixed metal oxides provided an opportunity to incorporate small amounts of expensive materials to enhance the performance of a less expensive, poorer performing material. Here, by homogeneously co-depositing a small amount of energy dense and conductive RuO2 into MnO2 nanowires, we demonstrate an improvement in specific capacitance. Importantly, we also demonstrate that this improvement is not primarily provided by redox activity of RuO2, but rather by improvement of the composite conductivity. A series of RuO2-MnO2 composite nanowires with different RuO2 loading percentages have been synthesized by performing co-electrodeposition in a porous alumina template. The structure of these RuO2-MnO2 nanowires is characterized by TEM and SEM. EDS mapping shows that RuO2 is well distributed in MnO2 matrix nanowires. The chemical constituents and the phase of these composite nanowires are confirmed by X-ray photoelectron and Raman spectroscopy. The amount of RuO2 is controlled by varying the concentrations of RuCl3 and MnAc2 in the deposition solution. The precise masses of MnO2 and RuO2 are determined by ICP-AES elemental analysis. MnO2 nanowires with 6.70 wt% RuO2 demonstrate a specific capacitance of 302 F g(-1) at 20 mV s(-1), compared to 210 F g(-1) for pristine MnO2 nanowires. Investigation of the RuO2 loading amount effect was conducted by electrochemical impedance spectroscopy (EIS) and deconvolution of capacitances, using methods previously reported by both Dunn and Transsiti. The RuO2-MnO2 nanowires studied here demonstrate a simple, straighforward method to overcome the intrinsically poor conductivity of MnO2, and clarify the source of RuO2's contribution to the improved performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA