Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Nature ; 562(7728): 557-562, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356185

RESUMEN

Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3-5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.

2.
Nano Lett ; 17(2): 695-701, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28026966

RESUMEN

In contrast to those for their polymeric counterparts, the controlled construction of organic heterostructured architectures derived from π-conjugated organic molecules has been rare and remains a great challenge. Herein, we develop a simple single-step solution strategy for the realization of organic heterostructures comprising coronene and perylene. Under a sequential crystallization process, an efficient doping step for coronene and perylene domains enables their perfect lattice matching, which facilitates facet-selective epitaxial growth of perylene domains on both the tips and the side surfaces of the preformed seed microwires by manipulating the growth pathways of the two pairs of materials. The present synthetic route provides a promising platform to investigate the detailed formation mechanism of complex organic heterostructures with specific topological configurations, further directing the construction of more functional heterostructured materials.

3.
Nano Lett ; 17(4): 2482-2489, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28231011

RESUMEN

Compared with polycrystalline films, single-crystalline methylammonium lead halide (MAPbX3, X = halogen) perovskite nanowires (NWs) with well-defined structure possess superior optoelectronic properties for optoelectronic applications. However, most of the prepared perovskite NWs exhibit properties below expectations due to poor crystalline quality and rough surfaces. It also remains a challenge to achieve aligned growth of single-crystalline perovskite NWs for integrated device applications. Here, we report a facile fluid-guided antisolvent vapor-assisted crystallization (FGAVC) method for large-scale fabrication of high-quality single-crystalline MAPb(I1-xBrx)3 (x = 0, 0.1, 0.2, 0.3, 0.4) NW arrays. The resultant perovskite NWs showed smooth surfaces due to slow crystallization process and moisture-isolated growth environment. Significantly, photodetectors made from the NW arrays exhibited outstanding performance in respect of ultrahigh responsivity of 12 500 A W-1, broad linear dynamic rang (LDR) of 150 dB, and robust stability. The responsivity represents the best value ever reported for perovskite-based photodetectors. Moreover, the spectral response of the MAPb(I1-xBrx)3 NW arrays could be sequentially tuned by varying the content of x = 0-0.4. On the basis of this feature, the NW arrays were monolithically integrated to form a unique system for directly measuring light wavelength. Our work would open a new avenue for the fabrication of high-performance, integrated optoelectronic devices from the perovskite NW arrays.

4.
Nano Lett ; 17(12): 7323-7329, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29185771

RESUMEN

The elongation of free-standing one-dimensional (1D) functional nanostructures into lengths above the millimeter range has brought new practical applications as they combine the remarkable properties of nanostructured materials with macroscopic lengths. However, it remains a big challenge to prepare 1D silicon nanostructures, one of the most important 1D nanostructures, with lengths above the millimeter range. Here we report the unprecedented preparation of ultralong single-crystalline Si nanowires with length up to 2 cm, which can function as the smallest active material to facilitate the miniaturization of macroscopic devices. These ultralong Si nanowires with augmented flexibility are of emerging interest for flexible electronics. We also demonstrate the first single-nanowire-based wearable joint motion sensor with superior performance to reported systems, which just represents one example of novel devices that can be built from these nanowires. The preparation of ultralong Si nanowires will stimulate the fabrication and miniaturization of electric, optical, medical, and mechanical devices to impact the semiconductor industry and our daily life in the near future.

5.
Nano Lett ; 17(7): 4240-4247, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28586231

RESUMEN

An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

6.
J Am Chem Soc ; 139(15): 5309-5312, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28358191

RESUMEN

Lead halide perovskite nanocrystals (NCs) have emerged as attractive nanomaterials owing to their excellent optical and optoelectronic properties. Their intrinsic instability and soft nature enable a post-synthetic controlled chemical transformation. We studied a ligand mediated transformation of presynthesized CsPbBr3 NCs to a new type of lead-halide depleted perovskite derivative nanocrystal, namely Cs4PbBr6. The transformation is initiated by amine addition, and the use of alkyl-thiol ligands greatly improves the size uniformity and chemical stability of the derived NCs. The thermodynamically driven transformation is governed by a two-step dissolution-recrystallization mechanism, which is monitored optically. Our results not only shed light on a decomposition pathway of CsPbBr3 NCs but also present a method to synthesize uniform colloidal Cs4PbBr6 NCs, which may actually be a common product of perovskite NCs degradation.

7.
Angew Chem Int Ed Engl ; 56(25): 7181-7185, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28429410

RESUMEN

Conventional photoelectrochemical cells utilize solar energy to drive the chemical conversion of water or CO2 into useful chemical fuels. Such processes are confronted with general challenges, including the low intrinsic activities and inconvenient storage and transportation of their gaseous products. A photoelectrochemical approach is proposed to drive the reductive production of industrial building-block chemicals and demonstrate that succinic acid and glyoxylic acid can be readily synthesized on Si nanowire array photocathodes free of any cocatalyst and at room temperature. These photocathodes exhibit a positive onset potential, large saturation photocurrent density, high reaction selectivity, and excellent operation durability. They capitalize on the large photovoltage generated from the semiconductor/electrolyte junction to partially offset the required external bias, and thereby make this photoelectrosynthetic approach significantly more sustainable compared to traditional electrosynthesis.

8.
Nano Lett ; 15(5): 3590-6, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25866955

RESUMEN

The p-n homojunctions are essential components for high-efficiency optoelectronic devices. However, the lack of p-type doping in CdS nanostructures hampers the fabrication of efficient photovoltaic (PV) devices from homojunctions. Here we report a facile solution-processed method to achieve efficient p-type doping in CdS nanoribbons (NRs) via a surface charge transfer mechanism by using spin-coated MoO3 nanodots (NDs). The NDs-decorated CdS NRs exhibited a hole concentration as high as 8.5 × 10(19) cm(-3), with the p-type conductivity tunable in a wide range of 7 orders of magnitude. The surface charge transfer mechanism was characterized in detail by X-ray photoelectron spectroscopy, Kelvin probe force microscopy, and first-principle calculations. CdS NR-homojunction PV devices fabricated on a flexible substrate exhibited a power conversion efficiency of 5.48%, which was significantly better than most of the CdS nanostructure-based heterojunction devices, presumably due to minimal junction defects. Devices made by connecting cells in series or in parallel exhibited enhanced power output, demonstrating the promising potential of the homojunction PV devices for device integration. Given the high efficiency of the surface charge transfer doping and the solution-processing capability of the method, our work opens up unique opportunities for high-performance, low-cost optoelectronic devices based on CdS homojunctions.

9.
Angew Chem Int Ed Engl ; 55(39): 11950-4, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27532345

RESUMEN

Ammonia-borane (AB) is an excellent material for chemical storage of hydrogen. However, the practical utilization of AB for production of hydrogen is hindered by the need of expensive noble metal-based catalysts. Here, we report Cux Co1-x O nanoparticles (NPs) facilely deposited on graphene oxide (GO) as a low-cost and high-performance catalyst for the hydrolysis of AB. This hybrid catalyst exhibits an initial total turnover frequency (TOF) value of 70.0 (H2 ) mol/(Cat-metal) mol⋅min, which is the highest TOF ever reported for noble metal-free catalysts, and a good stability keeping 94 % activity after 5 cycles. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) investigations suggested that the high catalytic performance could be attributed to the interfacial interaction between Cux Co1-x O NPs and GO. Moreover, the catalytic hydrolysis mechanism was studied by in situ XAS experiments for the first time, which reveal a significant water adsorption on the catalyst and clearly confirm the interaction between AB and the catalyst during hydrolysis.

10.
Small ; 11(42): 5611-28, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26378993

RESUMEN

Nanomaterial-based generators are a highly promising power supply for micro/nanoscale devices, capable of directly harvesting energy from ambient sources without the need for batteries. These generators have been designed within four main types: piezoelectric, triboelectric, thermoelectric, and electret effects, and consist of ZnO-based, silicon-based, ferroelectric-material-based, polymer-based, and graphene-based examples. The representative achievements, current challenges, and future prospects of these nanogenerators are discussed.

11.
Acc Chem Res ; 47(2): 612-23, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24397270

RESUMEN

Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and biomedical applications, including biosensor, bioimaging, and cancer therapy. First, we show that the interesting photoluminescence properties (e.g., strong fluorescence and robust photostability) and excellent biocompatibility of silicon nanoparticles (SiNPs) are superbly suitable for direct and long-term visualization of biological systems. The strongly fluorescent SiNPs are highly effective for bioimaging applications, especially for long-term cellular labeling, cancer cell detection, and tumor imaging in vitro and in vivo with high sensitivity. Next, we discuss the utilization of silicon nanomaterials to construct high-performance biosensors, such as silicon-based field-effect transistors (FET) and surface-enhanced Raman scattering (SERS) sensors, which hold great promise for ultrasensitive and selective detection of biological species (e.g., DNA and protein). Then, we introduce recent exciting research findings on the applications of silicon nanomaterials for cancer therapy with encouraging therapeutic outcomes. Lastly, we highlight the major challenges and promises in this field, and the prospect of a new nanobiotechnology platform based on silicon nanomaterials.


Asunto(s)
Técnicas Biosensibles/métodos , Diagnóstico por Imagen/métodos , Nanoestructuras/uso terapéutico , Neoplasias/terapia , Silicio , Materiales Biocompatibles , Técnicas Biosensibles/instrumentación , Colorantes Fluorescentes/química , Humanos , Nanoestructuras/química , Nanocables , Espectrometría Raman/instrumentación
12.
Nanotechnology ; 26(1): 015203, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25493339

RESUMEN

The facile generation of hierarchical CdS films and their accompanying application comparison as efficient photocatalytic electrodes toward water splitting were successfully achieved in this study. Three hierarchical CdS films, including nanoparticle packing film (CdS(P)), neat film (CdS(N)) and homojunction film (CdS(H)) deposited on an indium tin oxide (ITO) substrate, were realized by virtue of chemical bath deposition (CBD), atomic layer deposition (ALD) and the well-programmed combinational deposition (PCD) protocol with the above two processes successively. The experimental details demonstrate that the CdS(H) film acquired from PCD affords an amazing photocatalytic boost toward water splitting, which may profit from the larger surface area and from better absorption. The adoption of CdS(H) film as a photocatalyst can result in up to 22.18 times or 3.34 times the enhancement of the photocurrent density compared to reference devices with a CdSP or CdSN photoelectrode, indicating the effectiveness of the excogitation of the programmed protocol. Ultraviolet photoelectron spectroscopy was utilized to elucidate the electronic structures of the CdS(H) bilayer photoanode, and the dependence of their directional photocurrent on the energy level alignment was also depicted. This work not only excogitates the programmed deposition protocol that may be facilely extended to the fabrication of other hierarchical nanomaterials but also gives prominence to the importance of morphology and interfacial energetic control toward enhancing catalytic efficiency.

13.
Nanotechnology ; 26(37): 375401, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26303032

RESUMEN

Realization of broadband optical absorption enhancement in thin film c-Si solar cells is essential for improving energy conversion efficiency and reducing cost. Here, we demonstrate the fabrication of randomly arranged silicon nanorocket (SiNR) arrays as a new light trapping structure design for thin film silicon solar cells. The optical absorption of the randomly arranged SiNR arrays is investigated via finite-difference-frequency-domain (FDTD) simulation. Our calculations reveal that the light trapping structures facilitate the coupling of incident sunlight into the resonant modes and lead to significant photon absorption enhancement across a wide solar spectrum, resulting in ultimate efficiencies superior to nanowire and nanohole arrays with the same thickness. Our findings indicate that the randomly arranged SiNR arrays fabricated by the simple self-assembly and etching approach can have a significant impact on performance improvement in thin film silicon solar cells.

14.
Nanotechnology ; 26(27): 275201, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26066560

RESUMEN

Core/shell nanowires (CSNWs) composed of Si, C, and SiC are promising systems for optoelectronic devices. Through computational investigations, we find that the band gaps (Eg) of these nanowires can be controlled not only by changing their composition, but also by adjusting the core/shell thickness ratio. For Si/SiC or SiC/C CSNWs with a fixed total number of layers, the dependence of Eg on the core/shell thickness ratio shows a bowing effect. Eg can be tuned from a few eV all the way to zero. These investigations provide direction for designing optoelectronic devices based on Earth-abundant elements.

15.
Nano Lett ; 14(1): 18-23, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24341833

RESUMEN

We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under simulated solar light illumination, solar water splitting with remarkable efficiency is achieved with no external bias applied. Such a nanocomposite photoanode design offers great promise for unassisted sunlight-driven water oxidation, and further stability and efficiency improvements to the device will lead to exciting prospects for practical solar water splitting and artificial photosynthesis.

16.
Nano Lett ; 14(8): 4212-9, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25036852

RESUMEN

Inspired by metal corrosion in air, we demonstrate that metal-catalyzed electroless etching (MCEE) of silicon can be performed simply in aerated HF/H2O vapor for facile fabrication of three-dimensional silicon nanostructures such as silicon nanowires (SiNW) arrays. Compared to MCEE commonly performed in aqueous HF solution, the present pseudo gas phase etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths because of replacement of harsh oxidants such as H2O2 and AgNO3 by environmental-green and ubiquitous oxygen in air, minimum water consumption, and full utilization of HF.

17.
Small ; 10(22): 4455-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25243935

RESUMEN

Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.


Asunto(s)
Silicio/química , Espectrometría Raman/instrumentación , Propiedades de Superficie
18.
Chemphyschem ; 15(14): 3006-14, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25383401

RESUMEN

Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.


Asunto(s)
Álcalis/química , Imidazoles/química , Cationes , Solventes/química
19.
Nano Lett ; 13(11): 5039-45, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074380

RESUMEN

Surface-enhanced Raman scattering (SERS) systems utilizing the interparticle nanogaps as hot spots have demonstrated ultrasensitive single-molecule detection with excellent selectivity yet the electric fields are too confined in the small nanogaps to enable reproducible biomolecule detections. Here, guided by finite-difference-time-domain simulation, we report hexagonal-packed silver-coated silicon nanowire (Ag/SiNW) arrays as a nanogap-free SERS system with wide-range electric fields and controlled interwire separation. Significantly, the system achieves a SERS detection of long double-strand DNA of 25-50 nm in length with a relative standard deviation (RSD) of 14% for measurements of above 4000 spots over an area of 200 × 200 µm(2). The high reproducibility in the SERS detection is attributed to (1) the large interwire spacing of 150 nm that allows access and excitation of large biomolecules; and (2) 600 nm wide-range electric field generated by propagating surface plasmons along the surface of continuous Ag coating on a SiNW. Moreover, a reproducible multiplex SERS measurement is also demonstrated with RSDs of 7-16% with an enhancement factor of ~10(6). The above results show that the ordered Ag/SiNW array system may serve as an excellent SERS platform for practical chemical and biological detection.


Asunto(s)
Nanocables , Silicio/química , Plata/química , Espectrometría Raman/métodos , Microscopía Electrónica de Rastreo , Reproducibilidad de los Resultados
20.
J Colloid Interface Sci ; 673: 202-215, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38875787

RESUMEN

To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA