Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(10): e1010858, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36227854

RESUMEN

Mucormycosis (previously called zygomycosis) is a serious but rare fungal infection caused by a group of fungi belonging to the order Mucorales. These molds exist throughout the environment and generally do not cause serious problems in humans. Mucormycosis mainly affects individuals who are immunocompromised. The clinical manifestations of mucormycosis are wide-ranging; they include sinusitis (pansinusitis, rhino-orbital, or rhino-cerebral) as well as cutaneous, gastrointestinal, pulmonary, and disseminate infections. Many uncertainties remain regarding how to control these infections despite the recent addition of triazoles to the antifungal arsenal for treating this infection. Currently, lipid formulations of amphotericin B have become the standard treatment for mucormycosis due to their efficiency. Moreover, a growing body of data supports the need for surgical excision of infected and/or necrosed tissue whenever practical. In this mini review, the current status of treatment options for mucormycosis and recent studies of novel therapeutic options will be presented.


Asunto(s)
Mucormicosis , Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Desbridamiento , Humanos , Lípidos , Mucormicosis/tratamiento farmacológico , Triazoles/uso terapéutico
2.
Antimicrob Agents Chemother ; 67(2): e0068622, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36688672

RESUMEN

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein ß-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of ß-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.


Asunto(s)
COVID-19 , Mucormicosis , Micosis , Humanos , Micafungina/farmacología , Micafungina/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Calcineurina/genética , Calcineurina/farmacología , SARS-CoV-2 , Mucor/genética , Equinocandinas/farmacología , Equinocandinas/uso terapéutico , Micosis/tratamiento farmacológico , Serina , Farmacorresistencia Fúngica/genética
3.
PLoS Genet ; 15(2): e1007957, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742617

RESUMEN

Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.


Asunto(s)
Farmacorresistencia Fúngica Múltiple/genética , Mucor/efectos de los fármacos , Mucor/patogenicidad , Antifúngicos/farmacología , Epigénesis Genética , Genes Fúngicos , Humanos , Mucor/genética , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Mutación , Orotato Fosforribosiltransferasa/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacología , Orotidina-5'-Fosfato Descarboxilasa/genética , Interferencia de ARN , ARN de Hongos/genética , Sirolimus/farmacología , Tacrolimus/farmacología
4.
Cell Microbiol ; 22(10): e13236, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32562333

RESUMEN

Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Mucor/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Genes Fúngicos , Hifa/crecimiento & desarrollo , Mucor/metabolismo , Mucor/patogenicidad , Mutación , Micelio/crecimiento & desarrollo , Oxígeno/análisis , Transducción de Señal , Virulencia/genética
5.
Nature ; 513(7519): 555-8, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25079329

RESUMEN

Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.


Asunto(s)
Farmacorresistencia Fúngica/genética , Epigénesis Genética/genética , Mucor/efectos de los fármacos , Mucor/genética , Mutación/genética , Interferencia de ARN , Tacrolimus/farmacología , Calcineurina/genética , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Humanos , Hifa/efectos de los fármacos , Hifa/genética , Hifa/crecimiento & desarrollo , Datos de Secuencia Molecular , Mucor/crecimiento & desarrollo , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Fenotipo , Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/deficiencia , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo
6.
PLoS Genet ; 13(3): e1006686, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28339467

RESUMEN

Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.


Asunto(s)
Mucor/genética , Mutación , Interferencia de ARN , ARN de Hongos/genética , Secuencia de Aminoácidos , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunosupresores/farmacología , Modelos Genéticos , Mucormicosis/microbiología , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Tacrolimus/farmacología
7.
Fungal Genet Biol ; 124: 1-7, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30562583

RESUMEN

Rhizopus delemar causes devastating mucormycosis in immunodeficient individuals. Despite its medical importance, R. delemar remains understudied largely due to the lack of available genetic markers, the presence of multiple gene copies due to genome duplication, and mitotically unstable transformants resulting from conventional and limited genetic approaches. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) system induces efficient homologous and non-homologous break points and generates individual and multiple mutant alleles without requiring selective marker genes in a wide variety of organisms including fungi. Here, we have successfully adapted this technology for inducing gene-specific single nucleotide (nt) deletions in two clinical strains of R. delemar: FGSC-9543 and CDC-8219. For comparative reasons, we first screened for spontaneous uracil auxotrophic mutants resistant to 5-fluoroorotic acid (5-FOA) and obtained one substitution (f1) mutationin the FGSC-9543 strain and one deletion (f2) mutation in the CDC-8219 strain. The f2 mutant was then successfully complemented with a pyrF-dpl200 marker gene. We then introduced a vector pmCas9:tRNA-gRNA that expresses both Cas9 endonuclease and pyrF-specific gRNA into FGSC-9543 and CDC-8219 strains and obtained 34 and 42 5-FOA resistant isolates, respectively. Candidate transformants were successively transferred eight times by propagating hyphal tips prior to genotype characterization. Sequencing of the amplified pyrF allele in all transformants tested revealed a single nucleotide (nt) deletion at the 4th nucleotide before the protospacer adjacent motif (PAM) sequence, which is consistent with CRISPR-Cas9 induced gene mutation through non-homologous end joining (NHEJ). Our study provides a new research tool for investigating molecular pathogenesis mechanisms of R. delemar while also highlighting the utilization of CRISPR-Cas9 technology for generating specific mutants of Mucorales fungi.


Asunto(s)
Mutación Puntual , Rhizopus/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Genes Fúngicos , Vectores Genéticos , Orotato Fosforribosiltransferasa/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacología , Rhizopus/efectos de los fármacos , Rhizopus/enzimología , Uracilo
8.
Fungal Genet Biol ; 132: 103253, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31325489

RESUMEN

The emergence of drug-resistant fungi poses a continuously increasing threat to human health. Despite advances in preventive care and diagnostics, resistant fungi continue to cause significant mortality, especially in immunocompromised patients. Therapeutic resources are further limited by current usage of only four major classes of antifungal drugs. Resistance against these drugs has already been observed in pathogenic fungi requiring the development of much needed newer antifungal drugs. Epigenetic changes such as DNA or chromatin modifications alter gene expression levels in response to certain stimuli, including interaction with the host in the case of fungal pathogens. These changes can confer resistance to drugs by altering the expression of target genes or genes encoding drug efflux pumps. Multiple pathogens share many of these epigenetic pathways; thus, targeting epigenetic pathways might also identify drug target candidates for the development of broad-spectrum antifungal drugs. In this review, we discuss the importance of epigenetic pathways in mediating drug resistance in fungi as well as in the development of anti-fungal drugs.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Epigénesis Genética , Hongos/efectos de los fármacos , Hongos/genética , Desarrollo de Medicamentos , Hongos/patogenicidad , Código de Histonas , Interacciones Huésped-Patógeno , Humanos
9.
PLoS Genet ; 12(10): e1006350, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27695031

RESUMEN

Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential.


Asunto(s)
Candida albicans/genética , Candidiasis/tratamiento farmacológico , Metales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Candidiasis/microbiología , Caspofungina , Pared Celular/efectos de los fármacos , Quelantes/química , Quelantes/farmacología , Farmacorresistencia Fúngica/genética , Equinocandinas/farmacología , Genoma Fúngico , Humanos , Lipopéptidos/farmacología , Metales/química , Ratones , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Mutación , Ácido Pentético/farmacología , Transducción de Señal
10.
Nat Chem Biol ; 12(10): 867-75, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571477

RESUMEN

There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance.


Asunto(s)
Antifúngicos/farmacología , Depsipéptidos/farmacología , Hongos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/química , Depsipéptidos/síntesis química , Depsipéptidos/química , Farmacorresistencia Fúngica/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Hongos/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Serina-Treonina Quinasas TOR/metabolismo
11.
Fungal Genet Biol ; 107: 20-23, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28754285

RESUMEN

It has been a long-standing debate if sexual development occurs in the microsporidian lineages. Previous studies, including morphological observations, ploidy analysis, and the presence of a sex-related locus, provided evidence of possible extant of sexual development. This study presents another line of evidence by monitoring the parasitophorous vacuoles (PVs) formed by Encephalitozoon cuniculi. Time lapse observations of infection cycles of E. cuniculi revealed that multiple PVs can be formed in a single host cell and the PVs in the single cell can merge (fusion) or split (fission). The dynamics of PVs may provide a route for interactions between genetically distinct microsporidian isolates during host infections.


Asunto(s)
Encephalitozoon cuniculi/patogenicidad , Interacciones Huésped-Patógeno , Vacuolas/fisiología , Animales , Línea Celular , Encephalitozoon cuniculi/genética , Encephalitozoon cuniculi/fisiología , Encephalitozoon cuniculi/ultraestructura , Células HeLa , Humanos , Conejos , Imagen de Lapso de Tiempo , Vacuolas/ultraestructura
12.
Mol Microbiol ; 97(5): 844-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26010100

RESUMEN

Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.


Asunto(s)
Antifúngicos/farmacología , Inhibidores de la Calcineurina/farmacología , Calcineurina/fisiología , Interacciones Huésped-Patógeno , Mucor/genética , Mucor/fisiología , Sustitución de Aminoácidos , Anfotericina B/farmacología , Animales , Calcineurina/química , Calcineurina/genética , Línea Celular , Citocinas/inmunología , Sinergismo Farmacológico , Equinocandinas/farmacología , Eliminación de Gen , Hifa/genética , Hifa/ultraestructura , Larva , Lipopéptidos/farmacología , Macrófagos/inmunología , Macrófagos/microbiología , Micafungina , Ratones , Modelos Moleculares , Mariposas Nocturnas/microbiología , Mucor/citología , Mucor/efectos de los fármacos , Mutación , Fagosomas/metabolismo , Fagosomas/microbiología , Esporas Fúngicas/patogenicidad , Tacrolimus/farmacología , Virulencia/genética
13.
PLoS Pathog ; 9(9): e1003625, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039585

RESUMEN

Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO2 conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to virulence of this common zygomycete fungal pathogen.


Asunto(s)
Calcineurina/metabolismo , Proteínas Fúngicas/metabolismo , Mucor/enzimología , Mucor/patogenicidad , Factores de Virulencia/metabolismo , Calcineurina/genética , Línea Celular , Proteínas Fúngicas/genética , Humanos , Hifa/enzimología , Hifa/genética , Hifa/patogenicidad , Inmunosupresores/farmacología , Mucor/genética , Mucormicosis/genética , Mucormicosis/metabolismo , Mucormicosis/patología , Estructura Terciaria de Proteína , Tacrolimus/farmacología , Factores de Virulencia/genética
14.
Mycoses ; 57 Suppl 3: 18-24, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25175551

RESUMEN

Sexual development is extant in virtually all eukaryotic species, including throughout the kingdom Fungi. Positioned within the opisthokonts along with metazoans, fungi serve as model systems to elucidate the genetics and impact of sexual development. Basal fungal lineages such as the Mucoralean fungi provide a unique basis to study sexual reproduction, in which common ancestral traits found in both animal and fungal lineages may be conserved. This review discusses the sexual development, sex loci, and evolution of the sex locus in the Mucoralean fungi, which sheds light on our understanding of the evolution and functions of sex.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Genoma Fúngico , Mucorales/genética , Evolución Molecular , Sitios Genéticos , Modelos Moleculares
15.
Heliyon ; 10(7): e28481, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576583

RESUMEN

Probiotics have been applied to a wide range of bacteria, causing gastrointestinal and vaginal infections. However, probiotics generally possess limited antimicrobial spectra and are primarily utilized as dietary supplements. Recognizing the need for more versatile probiotics, this study focuses on isolating and characterizing strains suitable for antibiotic replacement. Among these strains, Weissella sp. SNUL2, derived from a traditional fermented food in Korea (i.e., Sikhae), emerged as a promising candidate. The correlation between optical density at 600 nm and colony-forming units was verified and applied in subsequent experiments. To assess the therapeutic potential of probiotics, antibacterial tests were conducted using a microplate reader to evaluate the inhibition of 60 bacterial strains (including common foodborne pathogens) induced by Weissella sp. SNUL2 cell-free supernatant (CFS). The results confirmed its broad-spectrum antibacterial properties compared to previously known probiotics. Furthermore, enzymatic treatment with proteinases (trypsin and pepsin) and a time-kill assay were conducted to elucidate the nature of the antibacterial substance in Weissella sp. SNUL2 CFS. Through sequential chromatography involving gel filtration and ion-exchange chromatography, specific fractions with enhanced antibacterial properties were identified. LC-MS/MS analysis of the secretome fraction revealed the presence of various proteins from the C39 family, peptidoglycan endopeptidases, and N-acetylmuramoyl-l-alanine amidase domain-containing protein precursors. Hence, the combined action of these proteins may contribute to Weissella sp. SNUL2's broad antimicrobial activity.

16.
PLoS Pathog ; 7(6): e1002086, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21698218

RESUMEN

Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex.


Asunto(s)
Mucor/patogenicidad , Esporas Fúngicas/citología , Virulencia/fisiología , Procesos de Crecimiento Celular/genética , Procesos de Crecimiento Celular/fisiología , Tamaño de la Célula , Individualidad , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mucor/citología , Mucor/genética , Mucor/fisiología , Tamaño de los Orgánulos/fisiología , Filogenia , Reproducción/genética , Reproducción/fisiología , Esporangios/citología , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología , Esporas Fúngicas/ultraestructura , Virulencia/genética
17.
Eukaryot Cell ; 11(6): 783-94, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22544906

RESUMEN

The human basidiomycetous fungal pathogen Cryptococcus neoformans serves as a model fungus to study sexual development and produces infectious propagules, basidiospores, via the sexual cycle. Karyogamy is the process of nuclear fusion and an essential step to complete mating. Therefore, regulation of nuclear fusion is central to understanding sexual development of C. neoformans. However, our knowledge of karyogamy genes was limited. In this study, using a BLAST search with the Saccharomyces cerevisiae KAR genes, we identified five C. neoformans karyogamy gene orthologs: CnKAR2, CnKAR3, CnKAR4, CnKAR7 (or CnSEC66), and CnKAR8. There are no apparent orthologs of the S. cerevisiae genes ScKAR1, ScKAR5, and ScKar9 in C. neoformans. Karyogamy involves the congression of two nuclei followed by nuclear membrane fusion, which results in diploidization. ScKar7 (or ScSec66) is known to be involved in nuclear membrane fusion. In C. neoformans, kar7 mutants display significant defects in hyphal growth and basidiospore chain formation during both a-α opposite and α-α unisexual reproduction. Fluorescent nuclear imaging revealed that during kar7 × kar7 bilateral mutant matings, the nuclei congress but fail to fuse in the basidia. These results demonstrate that the KAR7 gene plays an integral role in both opposite-sex and unisexual mating, indicating that proper control of nuclear dynamics is important. CnKAR2 was found to be essential for viability, and its function in mating is not known. No apparent phenotypes were observed during mating of kar3, kar4, or kar8 mutants, suggesting that the role of these genes may be dispensable for C. neoformans mating, which demonstrates a different evolutionary trajectory for the KAR genes in C. neoformans compared to those in S. cerevisiae.


Asunto(s)
Núcleo Celular/metabolismo , Cryptococcus neoformans/citología , Cryptococcus neoformans/genética , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos/genética , Núcleo Celular/ultraestructura , Posicionamiento de Cromosoma , Cryptococcus neoformans/ultraestructura , Diploidia , Proteínas Fúngicas/genética , Humanos , Viabilidad Microbiana , Modelos Biológicos , Mutación/genética , Transporte de Proteínas , Reproducción/genética , Homología de Secuencia de Aminoácido
18.
Eukaryot Cell ; 11(11): 1391-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23002105

RESUMEN

Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/metabolismo , Sulfato de Amonio/metabolismo , Sulfato de Amonio/farmacología , Transporte Biológico , Proteínas de Transporte de Catión/genética , Cruzamientos Genéticos , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Medios de Cultivo/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Hifa/genética , Hifa/metabolismo , Microdisección , Mutación , Nitrógeno/metabolismo , Especificidad de la Especie , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
19.
Eukaryot Cell ; 11(3): 270-81, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210828

RESUMEN

The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis.


Asunto(s)
Antifúngicos/farmacología , Proteínas Fúngicas/genética , Mucor/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Proteína 1A de Unión a Tacrolimus/genética , Animales , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Humanos , Inmunosupresores/farmacología , Larva/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Mucor/genética , Mucor/metabolismo , Mutación , Filogenia , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Transfección , Técnicas del Sistema de Dos Híbridos
20.
Intest Res ; 21(1): 148-160, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35692191

RESUMEN

BACKGROUND/AIMS: The fecal microbiota of Korean patients with inflammatory bowel disease (IBD) was investigated with respect to disease phenotypes and taxonomic biomarkers for diagnosis and prognosis of IBD. METHODS: Fecal samples from 70 ulcerative colitis (UC) patients, 39 Crohn's disease (CD) patients, and 100 healthy control individuals (HC) were collected. The fecal samples were amplified via polymerase chain reaction and sequenced using Illumina MiSeq. The relationships between fecal bacteria and clinical phenotypes were analyzed using the EzBioCloud database and 16S microbiome pipeline. RESULTS: The alpha-diversity of fecal bacteria was significantly lower in UC and CD (P<0.05) compared to that in HC. Bacterial community compositions in UC and CD were significantly different from that of HC according to Bray-Curtis dissimilarities, and there was also a difference between community composition in UC and CD (P=0.01). In UC, alpha-diversity was further decreased when the disease was more severe and the extent of disease was greater, and community composition significantly differed depending on the extent of the disease. We identified 9 biomarkers of severity and 6 biomarkers of the extent of UC. We also identified 5 biomarkers of active disease and 3 biomarkers of ileocolonic involvement in CD. Lachnospiraceae and Ruminococcus gnavus were biomarkers for better prognosis in CD. CONCLUSIONS: The fecal microbiota profiles of IBD patients were different from those of HC, and several bacterial taxa may be used as biomarkers to determine disease phenotypes and prognosis. These data may also help discover new therapeutic targets for IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA