Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(1): 516-526, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562565

RESUMEN

Organic molecules having emission in the NIR(II) region are emergent and receiving enormous attention. Unfortunately, attaining accountable organic emission intensity around the NIR(II) region is hampered by the dominant internal conversion operated by the energy gap law, where the emission energy gap and the associated internal reorganization energy λint play key roles. Up to the current stage, the majority of the reported organic NIR(II) emitters belong to those polymethines terminated by two symmetric chromophores. Such a design has proved to have a small λint that greatly suppresses the internal conversion. However, the imposition of symmetric chromophores is stringent, limiting further development of organic NIR(II) dyes in diversity and versatility. Here, we propose a new concept where as far as the emissive state of the any asymmetric polymethines contains more or less equally transition density between two terminated chromophores, λint can be as small as that of the symmetric polymethines. To prove the concept, we synthesize a series of new polymethines terminated by xanthen-9-yl-benzoic acid and 2,4-diphenylthiopyrylium derivatives, yielding AJBF1112 and AEBF1119 that reveal emission peak wavelength at 1112 and 1119 nm, respectively. The quantum yield is higher than all synthesized symmetric polymethines of 2,4-diphenylthiopyrylium derivatives (SC1162, 1182, 1185, and 1230) in this study. λint were calculated to be as small as 6.2 and 7.3 kcal/mol for AJBF1112 and AEBF1119, respectively, proving the concept. AEBF1119 was further prepared as a polymer dot to demonstrate its in vitro specific cellular imaging and in vivo tumor/bone targeting in the NIR(II) region.


Asunto(s)
Colorantes Fluorescentes , Indoles
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430560

RESUMEN

(1) Destabilization of microtubule dynamics is a primary strategy to inhibit fast growing tumor cells. The low cytotoxic derivative of microtubule inhibitor D-24851, named BPR0C261 exhibits antitumor activity via oral administration. In this study, we investigated if BPR0C261 could modulate the radiation response of human non-small cell lung cancer (NSCLC) cells with or without p53 expression. (2) Different doses of BPR0C261 was used to treat human NSCLC A549 (p53+/+) cells and H1299 (p53-/-) cells. The cytotoxicity, radiosensitivity, cell cycle distribution, DNA damage, and protein expression were evaluated using an MTT assay, a colony formation assay, flow cytometry, a comet assay, and an immunoblotting analysis, respectively. (3) BPR0C261 showed a dose-dependent cytotoxicity on A549 cells and H1299 cells with IC50 at 0.38 µM and 0.86 µM, respectively. BPR0C261 also induced maximum G2/M phase arrest and apoptosis in both cell lines after 24 h of treatment with a dose-dependent manner. The colony formation analysis demonstrated that a combination of low concentration of BPR0C261 and X-rays caused a synergistic radiosensitizing effect on NSCLC cells. Additionally, we found that a low concentration of BPR0C261 was sufficient to induce DNA damage in these cells, and it increased the level of DNA damage induced by a fractionation radiation dose (2 Gy) of conventional radiotherapy. Furthermore, the p53 protein level of A549 cell line was upregulated by BPR0C261. On the other hand, the expression of PTEN tumor suppressor was found to be upregulated in H1299 cells but not in A549 cells under the same treatment. Although radiation could not induce PTEN in H1299 cells, a combination of low concentration of BPR0C261 and radiation could reverse this situation. (4) BPR0C261 exhibits specific anticancer effects on NSCLC cells by the enhancement of DNA damage and radiosensitivity with p53-dependent and p53-independent/PTEN-dependent manners. The combination of radiation and BPR0C261 may provide an important strategy for the improvement of radiotherapeutic treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Tolerancia a Radiación , Proteína p53 Supresora de Tumor , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Tiazoles/farmacología , Tiazoles/uso terapéutico
3.
Molecules ; 25(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784458

RESUMEN

Hypopharyngeal cancer (HPC) accounts for the lowest survival rate among all types of head and neck cancers (HNSCC). However, the therapeutic approach for HPC still needs to be investigated. In this study, a theranostic 188Re-liposome was prepared to treat orthotopic HPC tumors and analyze the deregulated microRNA expressive profiles. The therapeutic efficacy of 188Re-liposome on HPC tumors was evaluated using bioluminescent imaging followed by next generation sequencing (NGS) analysis, in order to address the deregulated microRNAs and associated signaling pathways. The differentially expressed microRNAs were also confirmed using clinical HNSCC samples and clinical information from The Cancer Genome Atlas (TCGA) database. Repeated doses of 188Re-liposome were administrated to tumor-bearing mice, and the tumor growth was apparently suppressed after treatment. For NGS analysis, 13 and 9 microRNAs were respectively up-regulated and down-regulated when the cutoffs of fold change were set to 5. Additionally, miR-206-3p and miR-142-5p represented the highest fold of up-regulation and down-regulation by 188Re-liposome, respectively. According to Differentially Expressed MiRNAs in human Cancers (dbDEMC) analysis, most of 188Re-liposome up-regulated microRNAs were categorized as tumor suppressors, while down-regulated microRNAs were oncogenic. The KEGG pathway analysis showed that cancer-related pathways and olfactory and taste transduction accounted for the top pathways affected by 188Re-liposome. 188Re-liposome down-regulated microRNAs, including miR-143, miR-6723, miR-944, and miR-136 were associated with lower survival rates at a high expressive level. 188Re-liposome could suppress the HPC tumors in vivo, and the therapeutic efficacy was associated with the deregulation of microRNAs that could be considered as a prognostic factor.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Hipofaríngeas/radioterapia , Liposomas/química , MicroARNs/genética , Polietilenglicoles/química , Radioisótopos/administración & dosificación , Radioisótopos/uso terapéutico , Renio/administración & dosificación , Renio/uso terapéutico , Animales , Cápsulas , Línea Celular Tumoral , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patología , Ratones , Radioisótopos/química , Renio/química , Análisis de Supervivencia
4.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717306

RESUMEN

Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.


Asunto(s)
Quitosano/farmacología , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundario , Neoplasias Mamarias Animales/patología , Tolerancia a Radiación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Separación Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Rastreo Celular , Daño del ADN , Femenino , Histonas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Imagen Molecular , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante , Rayos X
5.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626093

RESUMEN

Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.


Asunto(s)
Ascitis/patología , Oro/administración & dosificación , Nanopartículas/administración & dosificación , Albúmina Sérica Humana/administración & dosificación , Administración Intravenosa , Animales , Área Bajo la Curva , Supervivencia Celular , Modelos Animales de Enfermedad , Dispersión Dinámica de Luz , Radioisótopos de Indio/química , Radioisótopos de Indio/farmacocinética , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Ratones , Nanopartículas/ultraestructura , Tamaño de la Partícula , Albúmina Sérica Humana/farmacocinética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
6.
Int J Mol Sci ; 18(5)2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441355

RESUMEN

Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Liposomas/química , Mitocondrias/efectos de los fármacos , Radiofármacos/toxicidad , Animales , Antígeno Ca-125/sangre , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Nanomedicina , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/radioterapia , Radioisótopos/química , Radiofármacos/química , Radiofármacos/uso terapéutico , Renio/química , Trasplante Heterólogo
7.
Biochim Biophys Acta ; 1852(5): 851-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25597880

RESUMEN

Cofilin-1, a non-muscle isoform of actin regulatory protein that belongs to the actin-depolymerizing factor (ADF)/cofilin family is known to affect cancer development. Previously, we found that over-expression of cofilin-1 suppressed the growth and invasion of human non-small cell lung cancer (NSCLC) cells in vitro. In this study, we further investigated whether over-expression of cofilin-1 can suppress tumor growth in vivo, and performed a microRNA array analysis to better understand whether specific microRNA would be involved in this event. The results showed that over-expression of cofilin-1 suppressed NSCLC tumor growth using the xenograft tumor model with the non-invasive reporter gene imaging modalities. Additionally, cell motility and invasion were significantly suppressed by over-expressed cofilin-1, and down-regulation of matrix metalloproteinase (MMPs) -1 and -3 was concomitantly detected. According to the microRNA array analysis, the let-7 family, particularly let-7b and let-7e, were apparently up-regulated among 248 microRNAs that were affected after over-expression of cofilin-1 up to 7 days. Knockdown of let-7b or let-7e using chemical locked nucleic acid (LNA) could recover the growth rate and the invasion of cofilin-1 over-expressing cells. Next, the expression of c-myc, LIN28 and Twist-1 proteins known to regulate let-7 were analyzed in cofilin-1 over-expressing cells, and Twist-1 was significantly suppressed under this condition. Up-regulation of let-7 microRNA by over-expressed cofilin-1 could be eliminated by co-transfected Twist-1 cDNA. Taken together, current data suggest that let-7 microRNA would be involved in over-expression of cofilin-1 mediated tumor suppression in vitro and in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Cofilina 1/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Animales , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Cofilina 1/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos NOD , Ratones SCID , Microscopía Fluorescente , Invasividad Neoplásica , Análisis de Secuencia por Matrices de Oligonucleótidos , Tomografía de Emisión de Positrones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo/métodos , Trasplante Heterólogo , Carga Tumoral/genética , Regulación hacia Arriba
8.
Int J Mol Sci ; 16(2): 4095-120, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25689427

RESUMEN

The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Reparación del ADN , Neoplasias/patología , Citoesqueleto de Actina , Actinas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiación Ionizante , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-38661516

RESUMEN

Hypopharyngeal cancer (HPC) is associated with the worst prognosis of all head and neck cancers and is typically identified in an advanced stage at the time of diagnosis. While oxidative stress might contribute to the onset of HPC in patients using tobacco or alcohol, the extent of this influence and the characteristics of HPC cells in advanced stage remain to be investigated. In this study, we explored whether HPC cells survived from necrotic xenograft tumors at late stage would display increased tumor resistance along with altered tolerance to oxidative stress. The remnant living HPC cells isolated from a late-stage xenograft tumor, named FaDu Ex-vivo cells showed stronger chemo- and radio-resistance, tumorigenesis, and invasiveness compared to parental FaDu cells. FaDu Ex-vivo cells also displayed increased angiogenic ability after re-transplantation to mice visualized by in vivo near infrared-II (NIR-II) fluorescence imaging modality. Moreover, FaDu Ex-vivo cells exhibited significant tumor-initiating cells (TICs) related properties accompanied by a reduction of the level of reactive oxygen species (ROS), which was associated with up-regulation of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Interestingly, inhibition of Nrf2 by the RNA interference and the chemical inhibitor could reduce TICs related properties of FaDu Ex-vivo cells. Oxidative stress potentially initiates HPC, but elevation of Nrf2-associated antioxidant mechanisms would be essential to mitigate this effect for promoting and sustaining the stemness of HPC at the advanced stage. Current data suggest that the antioxidant potency of advanced HPC would be a therapeutic target for the design of adjuvant treatm.

10.
Adv Healthc Mater ; : e2400606, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683681

RESUMEN

Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.

11.
J Biomed Opt ; 28(9): 094807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37234194

RESUMEN

Significance: Optical imaging in the second near-infrared (NIR-II, 1000 to 1700 nm) region is capable of deep tumor vascular imaging due to low light scattering and low autofluorescence. Non-invasive real-time NIR-II fluorescence imaging is instrumental in monitoring tumor status. Aim: Our aim is to develop an NIR-II fluorescence rotational stereo imaging system for 360-deg three-dimensional (3D) imaging of whole-body blood vessels, tumor vessels, and 3D contour of mice. Approach: Our study combined an NIR-II camera with a 360-deg rotational stereovision technique for tumor vascular imaging and 3D surface contour for mice. Moreover, self-made NIR-II fluorescent polymer dots were applied in high-contrast NIR-II vascular imaging, along with a 3D blood vessel enhancement algorithm for acquiring high-resolution 3D blood vessel images. The system was validated with a custom-made 3D printing phantom and in vivo experiments of 4T1 tumor-bearing mice. Results: The results showed that the NIR-II 3D 360-deg tumor blood vessels and mice contour could be reconstructed with 0.15 mm spatial resolution, 0.3 mm depth resolution, and 5 mm imaging depth in an ex vivo experiment. Conclusions: The pioneering development of an NIR-II 3D 360-deg rotational stereo imaging system was first applied in small animal tumor blood vessel imaging and 3D surface contour imaging, demonstrating its capability of reconstructing tumor blood vessels and mice contour. Therefore, the 3D imaging system can be instrumental in monitoring tumor therapy effects.


Asunto(s)
Neoplasias , Animales , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Imagen Óptica/métodos , Colorantes , Imagenología Tridimensional/métodos , Vasos Sanguíneos
12.
Biochem Biophys Res Commun ; 423(2): 366-72, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22664108

RESUMEN

Vascular invasion into the normally avascular articular surface is a hallmark of advanced osteoarthritis (OA). In this study, we demonstrated that the expression of tissue inhibitor of metalloproteinases-2 (TIMP2), an anti-angiogenic factor, was present at high levels in normal articular chondrocytes, and was drastically decreased shortly after destabilization of the medial meniscus (DMM). We also investigated the anti-angiogenic properties of TIMP2 via knockout. We hypothesized that the loss of TIMP2 could accelerate osteoarthritis development via promotion of angiogenesis. Loss of TIMP2 led to increased periarticular vascular formation 1 month post DMM, compared to wild-type mice, and did so without altering the expression pattern of matrix metalloproteinases and vascular endothelial growth factors. The increased vascularization eventually resulted in a severe degeneration of the articular surface by 4 months post DMM. Our findings suggest that reduction of TIMP2 levels and increased angiogenesis are possible primary events in OA progression. Inhibiting or delaying angiogenesis by TIMP2 expression or other anti-angiogenic therapies could improve OA prevention and treatment.


Asunto(s)
Meniscos Tibiales/irrigación sanguínea , Neovascularización Patológica/metabolismo , Osteoartritis/fisiopatología , Inhibidor Tisular de Metaloproteinasa-2/fisiología , Animales , Modelos Animales de Enfermedad , Metaloproteinasas de la Matriz , Ratones , Ratones Noqueados , Neovascularización Patológica/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Factores de Crecimiento Endotelial Vascular
13.
Int J Mol Sci ; 13(1): 1209-1224, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312313

RESUMEN

Autophagy is activated by various stresses, including DNA damage, and previous studies of DNA damage-induced autophagy have focused on the response to chemotherapeutic drugs, ionizing radiation, and reactive oxygen species. In this study, we investigated the biological significance of autophagic response to ultraviolet (UV) irradiation in A549 and H1299 cells. Our results indicated that UV induces on-rate autophagic flux in these cells. Autophagy inhibition resulting from the knockdown of beclin-1 and Atg5 reduced cell viability and enhanced apoptosis. Moreover, we found that ATR phosphorylation was accompanied by microtubule-associated protein 1 light chain 3B II (LC3B-II) expression during the early phases following UV irradiation, which is a well-established inducer of ATR. Knocking down ATR further attenuated the reduction in LC3B-II at early stages in response to UV treatment. Despite the potential role of ATR in autophagic response, reduced ATR expression does not affect autophagy induction during late phases (24 and 48 h after UV treatment). The result is consistent with the reduced ATR phosphorylation at the same time points and suggests that autophagic response at this stage is activated via a distinct pathway. In conclusion, this study demonstrated that autophagy acts as a cytoprotective mechanism against UV-induced apoptosis and that autophagy induction accompanied with apoptosis at late stages is independent of ATR activation.


Asunto(s)
Autofagia/efectos de la radiación , Rayos Ultravioleta , Apoptosis/efectos de la radiación , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación/efectos de la radiación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
14.
Cells ; 11(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36078143

RESUMEN

In clinical boron neutron capture therapy (BNCT), boronophenylalanine (BPA) administrations through one-step infusion (OSI) and two-step infusion (TSI) are the most widely used. This study compared the advantages of OSI and TSI using a human oral squamous cell carcinoma-bearing animal model. OSI was administered at a high-dose rate of 20 mg/kg/min for 20 min (total dose: 400 mg/kg) as the first step infusion. TSI was a prolonged infusion at a low-dose rate of 1.67 mg/kg/min for 15, 30, 45, and 60 min (total dose: 25, 50, 75, and 100 mg/kg) following the first step infusion. The sigmoid Emax model was used to evaluate the boron accumulation effect in the tumor. The advantages of TSI were observed to be greater than those of OSI. The observed advantages of TSI were as follows: a stable level of boron concentration in blood; tumor to blood boron ratio (T/B); tumor to muscle boron ratio (T/M); and skin to blood boron ratio (S/B). The boron accumulation effect in tumors increased to 68.98%. Thus, effective boron concentration in these tumor cells was achieved to enhance the lethal damage in BNCT treatment. Boron concentration in the blood was equal to that in the skin. Therefore, the equivalent dose was accurately estimated for the skin.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias Encefálicas , Carcinoma de Células Escamosas , Neoplasias de la Boca , Animales , Boro , Compuestos de Boro/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/radioterapia , Modelos Animales de Enfermedad , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Fenilalanina/uso terapéutico
15.
Biosensors (Basel) ; 12(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35200345

RESUMEN

Near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging boasts high spatial resolution and deep tissue penetration due to low light scattering, reduced photon absorption, and low tissue autofluorescence. NIR-II biological imaging is applied mainly in the noninvasive visualization of blood vessels and tumors in deep tissue. In the study, a stereo NIR-II fluorescence imaging system was developed for acquiring three-dimension (3D) images on tumor vasculature in real-time, on top of the development of fluorescent semiconducting polymer dots (IR-TPE Pdots) with ultra-bright NIR-II fluorescence (1000-1400 nm) and high stability to perform long-term fluorescence imaging. The NIR-II imaging system only consists of one InGaAs camera and a moving stage to simulate left-eye view and right-eye view for the construction of 3D in-depth blood vessel images. The system was validated with blood vessel phantom of tumor-bearing mice and was applied successfully in obtaining 3D blood vessel images with 0.6 mm- and 5 mm-depth resolution and 0.15 mm spatial resolution. The NIR-II stereo vision provides precise 3D information on the tumor microenvironment and blood vessel path.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Animales , Colorantes Fluorescentes/química , Ratones , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Fotones , Polímeros/química
16.
Chem Sci ; 13(34): 10074-10081, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128252

RESUMEN

Intraoperative fluorescence imaging in the second near-infrared (NIR-II) region heralds a new era in image-guided surgery since the success in the first-in-human liver-tumor surgery guided by NIR-II fluorescence. Limited by the conventional small organic NIR dyes such as FDA-approved indocyanine green with suboptimal NIR-II fluorescence and non-targeting ability, the resulting shallow penetration depth and high false positive diagnostic values have been challenging. Described here is the design of NIR-II emissive semiconducting polymer dots (Pdots) incorporated with thermally activated delayed fluorescence (TADF) moieties to exhibit emission maxima of 1064-1100 nm and fluorescence quantum yields of 0.40-1.58% in aqueous solutions. To further understand how the TADF units affect the molecular packing and the resulting optical properties of Pdots, in-depth and thorough density-functional theory calculations were carried out to better understand the underlying mechanisms. We then applied these Pdots for in vivo 3D bone imaging in mice. This work provides a direction for future designs of NIR-II Pdots and holds promising applications for bone-related diseases.

17.
Anal Chem ; 83(13): 5324-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21591802

RESUMEN

Prostate-specific antigen (PSA) has been reported to be a potential biomarker of breast cancer. Serum PSA of normal women is around 1 pg/mL, which is usually undetectable by current assay methods; thus an ultrasensitive measurement of PSA expression in women's serum is necessary to distinguish normal from malignant breast diseases. To enhance the sensitivity of conventional immunoassay technology for the detection of PSA in sera, we adopted a localized surface plasmon coupled fluorescence fiber-optic biosensor, which combines a sandwich immunoassay with the localized surface plasmon technique. The concentration of total PSA (t-PSA) (from 0.1 to 1000 pg/mL) in phosphate-buffered saline solution and the normalized fluorescence signal exhibit a linear relationship where the correlation coefficient is 0.9574. In addition, the concentration of additional t-PSA in 10-fold-diluted healthly women's serum across a similar range was measured. The correlation coefficient for this measurement is 0.9142. In clinical serum samples, moreover, the experimental results of t-PSA detection show that both the mean value and median of normalized fluorescence signals in the breast cancer group (155.2 and 145.7, respectively) are higher than those in the noncancer group (46.6 and 37.1, respectively). We also examined the receiver operating characteristic curve for t-PSA, and the area under the curve (AUC) is estimated to be 0.9063, the AUC being used to measure the performance of a test to correctly identify diseased and nondiseased subjects.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Mama/sangre , Estudios de Casos y Controles , Femenino , Humanos , Inmunoensayo , Resonancia por Plasmón de Superficie
18.
Front Oncol ; 11: 811635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127525

RESUMEN

Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein-protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.

19.
Pharmaceutics ; 13(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34834318

RESUMEN

Brachytherapy can provide sufficient doses to head and neck squamous cell carcinoma (HNSCC) with minimal damage to nearby normal tissues. In this study, the ß--emitter 177Lu was conjugated to DTPA-polyethylene glycol (PEG) decorated gold nanostars (177Lu-DTPA-pAuNS) used in surface-enhanced Raman scattering and photothermal therapy (PTT). The accumulation and therapeutic efficacy of 177Lu-DTPA-pAuNS were compared with those of 177Lu-DTPA on an orthotopic HNSCC tumor model. The SPECT/CT imaging and biodistribution studies showed that 177Lu-DTPA-pAuNS can be accumulated in the tumor up to 15 days, but 177Lu-DTPA could not be detected at 24 h after injection. The tumor viability and growth were suppressed by injected 177Lu-DTPA-pAuNS but not nonconjugated 177Lu-DTPA, as evaluated by bioluminescent imaging. The radiation-absorbed dose of the normal organ was the highest in the liver (0.33 mSv/MBq) estimated in a 73 kg adult, but that of tumorsphere (0.5 g) was 3.55 mGy/MBq, while intravenous injection of 177Lu-DTPA-pAuNS resulted in 1.97 mSv/MBq and 0.13 mGy/MBq for liver and tumorsphere, respectively. We also observed further enhancement of tumor-suppressive effects by a combination of 177Lu-DTPA-pAuNS and PTT compared to 177Lu-DTPA-pAuNS alone. In conclusion, 177Lu-DTPA-pAuNS may be considered as a potential radiopharmaceutical agent for HNSCC brachytherapy.

20.
Adv Healthc Mater ; 10(24): e2100993, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34549550

RESUMEN

Fluorescence probes emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with the ability for deep-tissue imaging in mammals herald a new era in surgical methodology. However, the brightness of these NIR-II probes is still far from satisfactory due to their low fluorescence quantum yields (QYs), preventing the observation of high-resolution images such as whole-organ vascular networks in real time. Described here is the molecular engineering of a series of semiconducting polymer dots (Pdots) incorporated with aggregation-induced emission moieties to exhibit the QYs as high as 14% in the NIR-II window. Benefiting from the ultrahigh brightness, a 1400 nm long-pass filter is utilized to realize in vivo 3D tumor mapping in mice. To further understand how the geometrical and electron structures of the semiconducting polymers affect their optical properties, the in-depth and thorough density-functional theory calculations are performed to interpret the experimental results. This study lays the groundwork for further molecular design of highly bright NIR-II Pdots.


Asunto(s)
Neoplasias , Puntos Cuánticos , Animales , Fluorescencia , Colorantes Fluorescentes , Ratones , Neoplasias/diagnóstico por imagen , Imagen Óptica , Polímeros , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA