RESUMEN
Understanding the spatial organization of membrane proteins is crucial for unraveling key principles in cell biology. The reaction-diffusion model is commonly used to understand biochemical patterning; however, applying reaction-diffusion models to subcellular phenomena is challenging because of the difficulty in measuring protein diffusivity and interaction kinetics in the living cell. In this work, we investigated the self-organization of the plasmalemma vesicle-associated protein (PLVAP), which creates regular arrangements of fenestrated ultrastructures, using single-molecule tracking. We demonstrated that the spatial organization of the ultrastructures is associated with a decrease in the association rate by actin destabilization. We also constructed a reaction-diffusion model that accurately generates a hexagonal array with the same 130 nm spacing as the actual scale and informs the stoichiometry of the ultrastructure, which can be discerned only through electron microscopy. Through this study, we integrated single-molecule experiments and reaction-diffusion modeling to surpass the limitations of static imaging tools and proposed emergent properties of the PLVAP ultrastructure.
Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Difusión , Modelos BiológicosRESUMEN
Human mitochondrial DNA polymerase (Pol gamma) is the sole replicase in mitochondria. Pol gamma is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol gamma holoenzyme and, separately, a variant of its processivity factor, Pol gammaB. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol gammaA interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol gamma structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.
Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Polimerasa gamma , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/genética , Alineación de SecuenciaRESUMEN
In live cells, the plasma membrane is composed of lipid domains separated by hundreds of nanometers in dynamic equilibrium. Lipid phase separation regulates the trafficking and spatiotemporal organization of membrane molecules that promote signal transduction. However, visualizing domains with adequate spatiotemporal accuracy remains challenging because of their subdiffraction limit size and highly dynamic properties. Here, we present a single lipid-molecular motion analysis pipeline (lipid-MAP) for analyzing the phase heterogeneity of lipid membranes by detecting the instantaneous velocity change of a single lipid molecule using the excellent optical properties of nanoparticles, high spatial localization accuracy of single-molecule localization microscopy, and separation capability of the diffusion state of the hidden Markov model algorithm. Using lipid-MAP, individual lipid molecules were found to be in dynamic equilibrium between two statistically distinguishable phases, leading to the formation of small (â¼170 nm), viscous (2.5× more viscous than surrounding areas), and transient domains in live cells. Moreover, our findings provide an understanding of how membrane compositional changes, i.e., cholesterol and phospholipids, affect domain formation. This imaging method can contribute to an improved understanding of spatiotemporal-controlled membrane dynamics at the molecular level.
Asunto(s)
Fosfolípidos , Transducción de Señal , Membrana Celular/metabolismo , Fosfolípidos/metabolismo , Membranas , Difusión , Membrana Dobles de Lípidos/metabolismoRESUMEN
BACKGROUND: This study aimed to identify the specific T cell co-stimulatory and co-inhibitory factors that play prognostic roles in patients with glioblastoma. Additionally, the unique histone H3 modification enzymes that regulate the expression levels of these specific co-stimulatory and co-inhibitory factors were investigated. METHODS: The medical records of 84 patients newly diagnosed with glioblastoma at our institution from January 2006 to December 2020 were retrospectively reviewed. Immunohistochemical (IHC) staining for T cell co-stimulatory factors (CD27, CD28, CD137, OX40, and ICOS), T cell co-inhibitory factors (CTLA4, PD1, PD-L1, TIM3, and CD200R), and histone H3 lysine modification enzymes (MLL4, RIZ, EZH1, NSD2, KDM5c, JMJD1a, UTX, and JMJD5) was performed on archived paraffin-embedded tissues obtained by biopsy or resection. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed for specific factors, which demonstrated causal relationships, in order to validate the findings of the IHC examinations. RESULTS: The mean follow-up duration was 27.5 months (range, 4.1-43.5 months). During this period, 76 patients (90.5%) died, and the mean OS was 19.4 months (95% confidence interval, 16.3-20.9 months). Linear positive correlations were observed between the expression levels of CD28 and JMJD1a (R2 linear = 0.982) and those of CD137 and UTX (R2 linear = 1.528). Alternatively, significant negative correlations were observed between the expression levels of CTLA4 and RIZ (R2 linear = -1.746) and those of PD-L1 and EZH1 (R2 linear = -2.118); these relationships were confirmed by qRT-PCR. In the multivariate analysis, increased expression levels of CD28 (P = 0.042), and CD137 (P = 0.009), and decreased expression levels of CTLA4 (P = 0.003), PD-L1 (P = 0.020), and EZH1 (P = 0.040) were significantly associated with longer survival. CONCLUSION: These findings suggest that the expression of certain T cell co-stimulatory factors, such as CD28 and CD 137, and co-inhibitory factors, such as CTLA4 and PD-L1 are associated with prognosis of glioblastoma patients.
Asunto(s)
Glioblastoma , Histonas , Humanos , Antígeno CTLA-4/genética , Antígeno B7-H1 , Lisina , Pronóstico , Antígenos CD28 , Glioblastoma/diagnóstico , Glioblastoma/genética , Epigénesis Genética , Estudios Retrospectivos , Linfocitos TRESUMEN
Lightning strikes can cause significant damage to critical infrastructure and pose a serious threat to public safety. To ensure the safety of facilities and investigate the causes of lightning accidents, we propose a cost-effective design method for a lightning current measuring instrument that uses a Rogowski coil and dual signal conditioning circuits to detect a wide range of lightning currents, ranging from hundreds of A to hundreds of kA. To implement the proposed lightning current measuring instrument, we design signal conditioning circuits and software capable of detecting and analyzing lightning currents from ±500 A to ±100 kA. By employing dual signal conditioning circuits, it offers the advantage of detecting a wide range of lightning currents compared to existing lightning current measuring instruments. The proposed instrument has the following features: First, the peak current, polarity, T1 (front time), T2 (time to half value), and Q (amount of energy of the lightning current) can be analyzed and measured with a fast sampling time of 380 ns. Second, it can distinguish whether a lightning current is induced or direct. Third, a built-in SD card is provided to save the detected lightning data. Finally, it provides Ethernet communication capability for remote monitoring. The performance of the proposed instrument is evaluated and validated by applying induced and direct lightning using a lightning current generator.
RESUMEN
Human phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimdiazole succinocarboxamide synthetase (PAICS) is a dual activity enzyme catalyzing two consecutive reactions in de novo purine nucleotide synthesis. Crystallographic structures of recombinant human PAICS suggested the channeling of 4-carboxy-5-aminoimidazole-1-ribose-5'-phosphate (CAIR) between two active sites of PAICS, while a prior work of an avian PAICS suggested otherwise. Here, we present time-course mass spectrometric data supporting the channeling of CAIR between domains of recombinant human PAICS. Time-course mass spectral analysis showed that CAIR added to the bulk solution (CAIRbulk) is decarboxylated and re-carboxylated before the accumulation of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR). An experiment with 13C-bicarbonate showed that SAICAR production was proportional to re-carboxylated CAIR instead of total CAIR or CAIRbulk. This result indicates that the SAICAR synthase domain selectively uses enzyme-made CAIR over CAIRbulk, which is consistent with the channeling model. This channeling between PAICS domains may be a part of a larger channeling process in de novo purine nucleotide synthesis.
Asunto(s)
Bicarbonatos , Carboxiliasas , Péptido Sintasas , Carboxiliasas/química , Dominio Catalítico , Humanos , Enzimas Multifuncionales/química , Péptido Sintasas/químicaRESUMEN
Neuromyelitis optica (NMO) is an autoimmune disease that primarily targets astrocytes. Autoantibodies (NMO-IgG) against the water channel protein, aquaporin 4 (AQP4), are a serologic marker in NMO patients, and they are known to be responsible for the pathophysiology of the disease. In the brain, AQP4 is mainly expressed in astrocytes, especially at the end-feet, where they form the blood-brain barrier. Following the interaction between NMO-IgG and AQP4 in astrocytes, rapid AQP4 endocytosis initiates pathogenesis. However, the cellular and molecular mechanisms of astrocyte destruction by autoantibodies remain largely elusive. We established an in vitro human astrocyte model system using induced pluripotent stem cells (iPSCs) technology in combination with NMO patient-derived serum and IgG to elucidate the cellular and functional changes caused by NMO-IgG. Herein, we observed that NMO-IgG induces structural alterations in mitochondria and their association with the endoplasmic reticulum (ER) and lysosomes at the ultrastructural level, which potentially leads to impaired mitochondrial functions and dynamics. Indeed, human astrocytes display impaired mitochondrial bioenergetics and autophagy activity in the presence of NMO-IgG. We further demonstrated NMO-IgG-driven ER membrane deformation into a multilamellar structure in human astrocytes. Together, we show that NMO-IgG rearranges cellular organelles and alter their functions and that our in vitro system using human iPSCs offers previously unavailable experimental opportunities to study the pathophysiological mechanisms of NMO in human astrocytes or conduct large-scale screening for potential therapeutic compounds targeting astrocytic abnormalities in patients with NMO.
Asunto(s)
Astrocitos/inmunología , Autoanticuerpos/inmunología , Retículo Endoplásmico/inmunología , Inmunoglobulina G/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Mitocondrias/inmunología , Neuromielitis Óptica/inmunología , Acuaporina 4/inmunología , HumanosRESUMEN
Abnormal metabolism and sustained proliferation are hallmarks of cancer. Pyruvate kinase M2 (PKM2) is a metabolic enzyme that plays important roles in both processes. Recently, PKM2 was shown to have protein kinase activity phosphorylating histone H3 and promoting cancer cell proliferation. However, the mechanism and extent of this protein kinase in cancer cells remain unclear. Here, we report that binding of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR), a metabolite abundant in proliferating cells, induces PKM2's protein kinase activity in vitro and in cells. Protein microarray experiments revealed that more than 100 human proteins, mostly protein kinases, are phosphorylated by PKM2-SAICAR. In particular, PKM2-SAICAR phosphorylates and activates Erk1/2, which in turn sensitizes PKM2 for SAICAR binding through phosphorylation. Additionally, PKM2-SAICAR was necessary to induce sustained Erk1/2 activation and mitogen-induced cell proliferation. Thus, the ligand-induced protein kinase activity from PKM2 is a mechanism that directly couples cell proliferation with intracellular metabolic status.
Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/química , Ribonucleótidos/química , Transducción de Señal , Hormonas Tiroideas/metabolismo , Adenosina Difosfato/química , Aminoimidazol Carboxamida/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Células HeLa , Humanos , Isoenzimas/metabolismo , Ligandos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Análisis por Matrices de Proteínas , Unión Proteica , Proteínas Recombinantes/metabolismo , Xenopus laevis , Proteínas de Unión a Hormona TiroideRESUMEN
In this study, a low-cost surge current detection sensor (SCDS) that can measure high current surges using a low-current toroidal coil is proposed for maintenance of a surge protective device (SPD). The proposed SCDS is designed to display the predicted lifetime of the SPD based on the magnitude of surge current and number of surges. In addition, a method for measuring high surge current using a toroidal coil that can usually measure only low current is proposed. A lightning strike counter consists of a microcontroller with a low-power liquid crystal display (LCD) driver, 3 VDC lithium battery, and signal conditioning circuit that converts amplitude information of the surge current into duration information of a negative pulse to facilitate processing in the microcontroller. In this paper, we propose a software algorithm that can calculate the remaining lifetime of SPD based on the amplitude and number of surge currents. There is also an option to select the capacity of the surge protective device and the number of phase lines, allowing it to assess the predicted lifetime for various types of Class II SPDs. The proposed SCDS is measured as 7.2 µA from the battery power consumption test, and the service life is calculated to be 11.1 years. It meets the International Standard IEC62561-6 test conditions of the lightning strike counter and is expected to be useful in the maintenance of SPDs and lightning protection systems.
RESUMEN
The human DNA polymerase gamma (Pol γ) is responsible for DNA replication in mitochondria. Pol γ is particularly susceptible to inhibition by dideoxynucleoside-based inhibitors designed to fight viral infection. Here, we report crystal structures of the replicating Pol γ-DNA complex bound to either substrate or zalcitabine, an inhibitor used for HIV reverse transcriptase. The structures reveal that zalcitabine binds to the Pol γ active site almost identically to the substrate dCTP, providing a structural basis for Pol γ-mediated drug toxicity. When compared to the apo form, Pol γ undergoes intra- and inter-subunit conformational changes upon formation of the ternary complex with primer/template DNA and substrate. We also find that the accessory subunit Pol γB, which lacks intrinsic enzymatic activity and does not contact the primer/template DNA directly, serves as an allosteric regulator of holoenzyme activities. The structures presented here suggest a mechanism for processivity of the holoenzyme and provide a model for understanding the deleterious effects of Pol γ mutations in human disease. Crystal structures of the mitochondrial DNA polymerase, Pol γ, in complex with substrate or antiviral inhibitor zalcitabine provide a basis for understanding Pol γ-mediated drug toxicity.
Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Zalcitabina/toxicidad , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa gamma , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/toxicidad , Zalcitabina/química , Zalcitabina/metabolismoRESUMEN
Senescence, defined as irreversible cell-cycle arrest, is the main driving force of aging and age-related diseases. Here, we performed high-throughput screening to identify compounds that alleviate senescence and identified the ataxia telangiectasia mutated (ATM) inhibitor KU-60019 as an effective agent. To elucidate the mechanism underlying ATM's role in senescence, we performed a yeast two-hybrid screen and found that ATM interacted with the vacuolar ATPase V1 subunits ATP6V1E1 and ATP6V1G1. Specifically, ATM decreased E-G dimerization through direct phosphorylation of ATP6V1G1. Attenuation of ATM activity restored the dimerization, thus consequently facilitating assembly of the V1 and V0 domains with concomitant reacidification of the lysosome. In turn, this reacidification induced the functional recovery of the lysosome/autophagy system and was coupled with mitochondrial functional recovery and metabolic reprogramming. Together, our data reveal a new mechanism through which senescence is controlled by the lysosomal-mitochondrial axis, whose function is modulated by the fine-tuning of ATM activity.
Asunto(s)
Envejecimiento/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Morfolinas/farmacología , Tioxantenos/farmacología , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Núcleo Celular , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/metabolismo , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de OxígenoRESUMEN
The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Metiltransferasas/metabolismo , Transferasas del Grupo 1-Carbono/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Biocatálisis , Vías Biosintéticas , Dominio Catalítico , Cristalografía por Rayos X , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ligandos , Metiltransferasas/deficiencia , Metiltransferasas/genética , Modelos Moleculares , Peso Molecular , Transferasas del Grupo 1-Carbono/química , Multimerización de Proteína , Estructura Secundaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , S-Adenosilmetionina/biosíntesis , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismoRESUMEN
In this study, a new submersion detection sensor with improved reliability and stability is proposed. The new sensor uses two Resistance Temperature Detectors (RTDs) and operates on the thermal equilibrium principle. The submersion detection sensor controls two RTDs that maintain a constant temperature difference between them in the surrounding environment. The first RTD is used as a reference sensor to measure ambient temperature and the second RTD is supplied with higher current than the reference sensor for self-heating. When submerged, because the thermal conductivity and convective heat transfer coefficient of water are higher than that of air, the temperature difference between the two RTDs is lower in water than in air based on the thermal equilibrium principle. Under these conditions, a submersion detector with a signal conditioning circuit detects these temperature differences. The static performance of the proposed sensor was evaluated by checking whether malfunctions occurred at varying ambient temperatures, differing humidities, and when there was rainfall. In addition, the dynamic performance was evaluated using the response time at varying ambient air temperatures before submersion and with changing water temperatures after submersion, as a metric. The proposed submersion detection sensor is expected to find useful application in aircrafts, ships, and various other industrial fields.
RESUMEN
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+ The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation.
Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Magnesio/química , Manganeso/química , Mutación Missense , Sustitución de Aminoácidos , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , Dominios Proteicos , ADN Polimerasa iotaRESUMEN
Enzyme-mediated modifications at the wobble position of tRNAs are essential for the translation of the genetic code. We report the genetic, biochemical and structural characterization of CmoB, the enzyme that recognizes the unique metabolite carboxy-S-adenosine-L-methionine (Cx-SAM) and catalyzes a carboxymethyl transfer reaction resulting in formation of 5-oxyacetyluridine at the wobble position of tRNAs. CmoB is distinctive in that it is the only known member of the SAM-dependent methyltransferase (SDMT) superfamily that utilizes a naturally occurring SAM analog as the alkyl donor to fulfill a biologically meaningful function. Biochemical and genetic studies define the in vitro and in vivo selectivity for Cx-SAM as alkyl donor over the vastly more abundant SAM. Complementary high-resolution structures of the apo- and Cx-SAM bound CmoB reveal the determinants responsible for this remarkable discrimination. Together, these studies provide mechanistic insight into the enzymatic and non-enzymatic feature of this alkyl transfer reaction which affords the broadened specificity required for tRNAs to recognize multiple synonymous codons.
Asunto(s)
Proteínas de Escherichia coli/química , Metiltransferasas/química , ARN de Transferencia/metabolismo , S-Adenosilmetionina/análogos & derivados , Sitios de Unión , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , ARN de Transferencia/química , S-Adenosilmetionina/química , TermodinámicaRESUMEN
DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.
Asunto(s)
Cisplatino/metabolismo , Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Cromatografía en Gel , Cromatografía por Intercambio Iónico , ADN Polimerasa III/metabolismo , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Fluoresceína , Células HEK293 , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Humanos , Proteínas Mad2/metabolismoRESUMEN
Platinum drugs are a mainstay of anticancer chemotherapy. Nevertheless, tumors often display inherent or acquired resistance to platinum-based treatments, prompting the search for new compounds that do not exhibit cross-resistance with current therapies. Phenanthriplatin, cis-diamminephenanthridinechloroplatinum(II), is a potent monofunctional platinum complex that displays a spectrum of activity distinct from those of the clinically approved platinum drugs. Inhibition of RNA polymerases by phenanthriplatin lesions has been implicated in its mechanism of action. The present study evaluates the ability of phenanthriplatin lesions to inhibit DNA replication, a function disrupted by traditional platinum drugs. Phenanthriplatin lesions effectively inhibit DNA polymerases ν, ζ, and κ and the Klenow fragment. In contrast to results obtained with DNA damaged by cisplatin, all of these polymerases were capable of inserting a base opposite a phenanthriplatin lesion, but only Pol η, an enzyme efficient in translesion synthesis, was able to fully bypass the adduct, albeit with low efficiency. X-ray structural characterization of Pol η complexed with site-specifically platinated DNA at both the insertion and +1 extension steps reveals that phenanthriplatin on DNA interacts with and inhibits Pol η in a manner distinct from that of cisplatin-DNA adducts. Unlike cisplatin and oxaliplatin, the efficacies of which are influenced by Pol η expression, phenanthriplatin is highly toxic to both Pol η+ and Pol η- cells. Given that increased expression of Pol η is a known mechanism by which cells resist cisplatin treatment, phenanthriplatin may be valuable in the treatment of cancers that are, or can easily become, resistant to cisplatin.
Asunto(s)
Antineoplásicos , Daño del ADN , ADN de Neoplasias , ADN Polimerasa Dirigida por ADN , Proteínas de Neoplasias , Neoplasias , Compuestos Organoplatinos , Fenantridinas , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , ADN de Neoplasias/biosíntesis , ADN de Neoplasias/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Fenantridinas/química , Fenantridinas/farmacología , Relación Estructura-ActividadRESUMEN
Human pyruvate kinase isoform M2 (PKM2) is a glycolytic enzyme isoform implicated in cancer. Malignant cancer cells have higher levels of dimeric PKM2, which is regarded as an inactive form of tetrameric pyruvate kinase. This perceived inactivity has fueled controversy about how the dimeric form of pyruvate kinase might contribute to cancer. Here we investigate enzymatic properties of PKM2(G415R), a variant derived from a cancer patient, which we show by size-exclusion chromatography and small-angle X-ray scattering to be a dimer that cannot form a tetramer in solution. Although PKM2(G415R) binds to fructose 1,6-bisphosphate (FBP), unlike the wild type this PKM2 variant shows no activation by FBP. In contrast, PKM2(G415R) is activated by succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5'-phosphate (SAICAR), an endogenous metabolite that we previously showed correlates with an increased level of cell proliferation and promotes protein kinase activity of PKM2. Our results demonstrate an important and unexpected enzymatic activity of the PKM2 dimer that likely has a key role in cancer progression.
Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Piruvato Quinasa/metabolismo , Ribonucleótidos/metabolismo , Aminoimidazol Carboxamida/metabolismo , Calorimetría , Cromatografía en Gel , Cristalografía por Rayos X , Dimerización , Activación EnzimáticaRESUMEN
DNA polymerase (pol) κ efficiently catalyzes error-free translesion DNA synthesis (TLS) opposite bulky N2-guanyl lesions induced by carcinogens such as polycyclic aromatic hydrocarbons. We investigated the biochemical effects of nine human nonsynonymous germline POLK variations on the TLS properties of pol κ, utilizing recombinant pol κ (residues 1-526) enzymes and DNA templates containing an N2-CH2(9-anthracenyl)G (N2-AnthG), 8-oxo-7,8-dihydroguanine (8-oxoG), O6-methyl(Me)G, or an abasic site. In steady-state kinetic analyses, the R246X, R298H, T473A, and R512W variants displayed 7- to 18-fold decreases in kcat/Km for dCTP insertion opposite G and N2-AnthG, with 2- to 3-fold decreases in DNA binding affinity, compared to that of the wild-type, and further showed 5- to 190-fold decreases in kcat/Km for next-base extension from C paired with N2-AnthG. The A471V variant showed 2- to 4-fold decreases in kcat/Km for correct nucleotide insertion opposite and beyond G (or N2-AnthG) compared to that of the wild-type. These five hypoactive variants also showed similar patterns of attenuation of TLS activity opposite 8-oxoG, O6-MeG, and abasic lesions. By contrast, the T44M variant exhibited 7- to 11-fold decreases in kcat/Km for dCTP insertion opposite N2-AnthG and O6-MeG (as well as for dATP insertion opposite an abasic site) but not opposite both G and 8-oxoG, nor beyond N2-AnthG, compared to that of the wild-type. These results suggest that the R246X, R298H, T473A, R512W, and A471V variants cause a general catalytic impairment of pol κ opposite G and all four lesions, whereas the T44M variant induces opposite lesion-dependent catalytic impairment, i.e., only opposite O6-MeG, abasic, and bulky N2-G lesions but not opposite G and 8-oxoG, in pol κ, which might indicate that these hypoactive pol κ variants are genetic factors in modifying individual susceptibility to genotoxic carcinogens in certain subsets of populations.
Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Variación Genética/genética , Humanos , Modelos Moleculares , Conformación MolecularRESUMEN
Cellular senescence is a crucial biological process associated with organismal aging and many chronic diseases. Here, we present a brief guide to mammalian senescence assays, including the measurement of cell cycle arrest, change in cellular morphology, senescence-associated ß-galactosidase (SA-ß-gal) staining, and the expression of senescence-associated secretory phenotype (SASP). This work will be useful for biologists with minimum expertise in cellular senescence assays.