Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.270
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677511

RESUMEN

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Genoma Humano , ARN Largo no Codificante/genética , Animales , Citarabina/farmacología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Ratones , Farmacogenética , Proteínas/genética , ARN/análisis , ARN Mensajero/genética , Transducción de Señal
2.
Cell ; 169(4): 597-609.e11, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475892

RESUMEN

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infección por el Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Brasil , Femenino , Humanos , Memoria Inmunológica , Leucocitos Mononucleares/inmunología , Masculino , México , Ratones , Infección por el Virus Zika/sangre
3.
Mol Cell ; 84(6): 1120-1138.e8, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38377992

RESUMEN

UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Immunity ; 55(12): 2419-2435.e10, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36370711

RESUMEN

Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.


Asunto(s)
COVID-19 , Nanopartículas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Ratones , Animales , Humanos , SARS-CoV-2 , Epítopos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales , Pruebas de Neutralización , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
Immunity ; 55(6): 998-1012.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447092

RESUMEN

SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Células B de Memoria , SARS-CoV-2
6.
Nat Rev Mol Cell Biol ; 19(9): 547-562, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29858604

RESUMEN

PTEN is a potent tumour suppressor, and its loss of function is frequently observed in both heritable and sporadic cancers. PTEN has phosphatase-dependent and phosphatase-independent (scaffold) activities in the cell and governs a variety of biological processes, including maintenance of genomic stability, cell survival, migration, proliferation and metabolism. Even a subtle decrease in PTEN levels and activity results in cancer susceptibility and favours tumour progression. Regulation of PTEN has therefore emerged as a subject of intense research in tumour biology. Recent discoveries, including the existence of distinct PTEN isoforms and the ability of PTEN to form dimers, have brought to light new modes of PTEN function and regulation. These milestone findings have in turn opened new therapeutic avenues for cancer prevention and treatment through restoration of PTEN tumour suppressor activity.


Asunto(s)
Neoplasias/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Neoplasias/patología
7.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34233158

RESUMEN

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Hígado Graso/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Hígado Graso/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Triglicéridos/metabolismo
8.
Immunity ; 50(6): 1513-1529.e9, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31126879

RESUMEN

Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/aislamiento & purificación , Afinidad de Anticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Epítopos/química , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/aislamiento & purificación , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética , Humanos , Modelos Moleculares , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica/inmunología , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Nature ; 588(7839): 682-687, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33045718

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein1-5 show promise therapeutically and are being evaluated clinically6-8. Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies5 in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to 'up' RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and 'down' RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs9. Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Neutralizantes/ultraestructura , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/ultraestructura , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Sitios de Unión/genética , Sitios de Unión/inmunología , Línea Celular , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación , Receptores de Coronavirus/química , Receptores de Coronavirus/metabolismo , Receptores de Coronavirus/ultraestructura , SARS-CoV-2/química , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/ultraestructura
10.
Nucleic Acids Res ; 52(10): e48, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726866

RESUMEN

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.


Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Inmunoprecipitación , Levivirus/genética , Levivirus/metabolismo , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN/metabolismo , ARN/química , ARN/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Telomerasa/metabolismo , Telomerasa/genética , Modelos Estadísticos
11.
Hepatology ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042837

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS: Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT-3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 (LRG1) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated hepatic stellate cells via TGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS: RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.

12.
Ann Neurol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073169

RESUMEN

OBJECTIVE: Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS: Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS: The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION: Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024.

14.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256819

RESUMEN

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Transactivadores/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Cromatina , Hipocampo/metabolismo , Convulsiones/genética , Tretinoina
15.
J Proteome Res ; 23(3): 905-915, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38293943

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to the absence of diagnostic markers and molecular targets. Here, we took an unconventional approach to identify new molecular targets for pancreatic cancer. We chose uncharacterized protein evidence level 1 without function annotation from extensive proteomic research on pancreatic cancer and focused on proline and serine-rich 2 (PROSER2), which ranked high in the cell membrane and cytoplasm. In our study using cell lines and patient-derived orthotopic xenograft cells, PROSER2 exhibited a higher expression in cells derived from primary tumors than in those from metastatic tissues. PROSER2 was localized in the cell membrane and cytosol by immunocytochemistry. PROSER2 overexpression significantly reduced the metastatic ability of cancer cells, whereas its suppression had the opposite effect. Proteomic analysis revealed that PROSER2 interacts with STK25 and PDCD10, and their binding was confirmed by immunoprecipitation and immunocytochemistry. STK25 knockdown enhanced metastasis by decreasing p-AMPK levels, whereas PROSER2-overexpressing cells increased the level of p-AMPK, indicating that PROSER2 suppresses invasion via the AMPK pathway by interacting with STK25. This is the first demonstration of the novel role of PROSER2 in antagonizing tumor progression via the STK25-AMPK pathway in PDAC. LC-MS/MS data are available at MassIVE (MSV000092953) and ProteomeXchange (PXD045646).


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Proteínas Quinasas Activadas por AMP , Cromatografía Liquida , Proteómica , Proliferación Celular , Movimiento Celular , Espectrometría de Masas en Tándem , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Modelos Animales de Enfermedad , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular
16.
J Biol Chem ; 299(1): 102728, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410433

RESUMEN

Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiencia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Obesidad/genética
17.
J Am Chem Soc ; 146(1): 543-551, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147538

RESUMEN

A nanographene-fused expanded carbaporphyrin (5) and its BF2 complex (6) were synthesized. Single-crystal X-ray structures revealed that 5 and 6 are connected by two hexa-peri-hexabenzocoronene (HBC) units and two dipyrromethene or BODIPY units, respectively. As prepared, 5 and 6 both show nonaromatic character with figure-of-eight carbaoctaphyrin (1.1.1.0.1.1.1.0) cores and adopt tweezers-like conformations characterized by a partially confined space between the two constituent HBC units. The distance between the HBC centers is >10 Å, while the dihedral angles between the two HBC planes are 30.5 and 35.2° for 5 and 6, respectively. The interactions between 5 and 6 and fullerene C60 were studied both in organic media and in the solid state. Proton NMR spectral titrations of 5 and 6 with C60 revealed a 1:1 binding mode for both macrocycles. In toluene-d8, the corresponding binding constants were determined to be 1141 ± 17 and 994 ± 10 M-1 for 5 and 6, respectively. Single-crystal X-ray diffraction structural analyses confirmed the formation of 1:1 fullerene inclusion complexes in the solid state. The C60 guests in both complexes are found within triangular pockets composed of two HBC units from the tweezers-like receptor most closely associated with the bound fullerene, as well as an HBC unit from an adjacent host. Femtosecond transient absorption measurements revealed subpicosecond ultrafast charge separation between 5 (and 6) and C60 in the complexes. To the best of our knowledge, the present report provides the first example wherein a nanographene building block is incorporated into the core of a porphyrinic framework.

18.
Kidney Int ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084257

RESUMEN

IgA nephropathy (IgAN) is the most common type of glomerulonephritis that frequently progresses to kidney failure. However, the molecular pathogenesis underlying IgAN remains largely unknown. Here, we investigated the role of galectin-3 (Gal-3), a galactoside-binding protein in IgAN pathogenesis and showed that Gal-3 expression by the kidney was significantly enhanced in patients with IgAN. In both TEPC-15 hybridoma-derived IgA-induced, passive, and spontaneous "grouped" ddY IgAN models, Gal-3 expression was clearly increased with disease severity in the glomeruli, peri-glomerular regions, and some kidney tubules. Gal-3 knockout (KO) in the passive IgAN model had significantly improved proteinuria, kidney function and reduced severity of kidney pathology, including neutrophil infiltration and decreased differentiation of Th17 cells from kidney-draining lymph nodes, despite increased percentages of regulatory T cells. Gal-3 KO also inhibited the NLRP3 inflammasome, yet it enhanced autophagy and improved kidney inflammation and fibrosis. Moreover, administration of 6-de-O-sulfated, N-acetylated low-molecular-weight heparin, a competitive Gal-3 binding inhibitor, restored kidney function and improved kidney lesions in passive IgAN mice. Thus, our results suggest that Gal-3 is critically involved in IgAN pathogenesis by activating the NLRP3 inflammasome and promoting Th17 cell differentiation. Hence, targeting Gal-3 action may represent a new therapeutic strategy for treatment of this kidney disease.

19.
Ann Surg ; 279(3): 536-541, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487006

RESUMEN

OBJECTIVE: To determine the impact of nodal basin ultrasound (US) surveillance versus completion lymph node dissection (CLND) in children and adolescents with sentinel lymph node (SLN) positive melanoma. BACKGROUND: Treatment for children and adolescents with melanoma are extrapolated from adult trials. However, there is increasing evidence that important clinical and biological differences exist between pediatric and adult melanoma. METHODS: Patients ≤18 years diagnosed with cutaneous melanoma between 2010 and 2020 from 14 pediatric hospitals were included. Data extracted included demographics, histopathology, nodal basin strategies, surveillance intervals, and survival information. RESULTS: Of 252 patients, 90.1% (n=227) underwent SLN biopsy (SLNB), 50.9% (n=115) had at least 1 positive node. A total of 67 patients underwent CLND with 97.0% (n=65/67) performed after a positive SLNB. In contrast, 46 total patients underwent US observation of nodal basins with 78.3% (n=36/46) of these occurring after positive SLNB. Younger patients were more likely to undergo US surveillance (median age 8.5 y) than CLND (median age 11.3 y; P =0.0103). Overall, 8.9% (n=21/235) experienced disease recurrence: 6 primary, 6 nodal, and 9 distant. There was no difference in recurrence (11.1% vs 18.8%; P =0.28) or death from disease (2.2% vs 9.7%; P =0.36) for those who underwent US versus CLND, respectively. CONCLUSIONS: Children and adolescents with cutaneous melanoma frequently have nodal metastases identified by SLN. Recurrence was more common among patients with thicker primary lesions and positive SLN. No significant differences in oncologic outcomes were observed with US surveillance and CLND following the identification of a positive SLN.


Asunto(s)
Melanoma , Ganglio Linfático Centinela , Neoplasias Cutáneas , Adulto , Humanos , Adolescente , Niño , Melanoma/diagnóstico por imagen , Melanoma/cirugía , Melanoma/patología , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/cirugía , Ganglio Linfático Centinela/patología , Recurrencia Local de Neoplasia/patología , Escisión del Ganglio Linfático , Biopsia del Ganglio Linfático Centinela , Estudios Retrospectivos
20.
Biochem Biophys Res Commun ; 734: 150443, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39088981

RESUMEN

Menopause-associated mood disorder is characterized by emotional depression, anxiety, and stress, which accompany hypogonadism in women in the menopausal phase. The current treatment for menopause-associated mood disorder provides only symptomatic relief and is associated with many side effects. Supplementation with vitamin E has been shown to be effective in ameliorating anxiety and depression. However, the effects of vitamin E and its underlying mechanism in ameliorating menopause-associated mood disorders remain uncertain. This work evaluated the effects of α-tocopherol and tocotrienol-rich palm oil extract on depressive and anxiety-related phenotypes induced by estrogen deficiency through ovariectomy in mice. Our study revealed that ovariectomized mice exhibited alterations in behavior indicative of depressive- and anxiety-like behaviors. The serum corticosterone level, a glucocorticoid hormone associated with stress, was found to be elevated in ovariectomized mice as compared to the sham group. Oral administration of α-tocopherol (50 and 100 mg/kg) and tocotrienol-rich palm oil extract (100 and 200 mg/kg) for 14 days alleviated these behavioral changes, as observed in open field, social interaction, and tail suspension tests. However, treatment with tocotrienol-rich palm oil extract, but not α-tocopherol, modulated the depressive- and anxiety-like responses in ovariectomized mice subjected to chronic restraint stress. Both treatments suppressed the elevated serum corticosterone level. Our findings suggested that α-tocopherol and tocotrienol-rich palm oil extract alleviated menopause-associated mood disorder, at least in part, by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The findings of this study can provide a new foundation for the treatment of menopause-associated depressive- and anxiety-like phenotypes, for the betterment of psychological wellbeing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA