Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 166(1): 166, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565800

RESUMEN

BACKGROUND: The health-related quality of life (HRQoL) and cognition are important indicators for the quality of survival in patients with high-grade glioma (HGG). However, data on long-term survivors and their caregivers are scarce. We aim to investigate the interaction between cognition and HRQoL in long-term survivors, their caregivers' evaluations, and the effect on caregiver strain and burden. METHODS: 21 long-term HGG (8 WHO grade III and 13 WHO grade IV) survivors (survival ≥ 5 years) and 15 caregivers were included. Cognition (verbal memory, attention, executive functioning, and language), HRQoL, anxiety and depression, caregiver strain, and caregiver burden were assessed with standardized measures. Questionnaires were completed by patients and/or their caregivers. RESULTS: Mean survival was 12 years (grade III) and 8 years (grade IV). Cognition was significantly impaired with a large individual variety. Patients' general HRQoL was not impaired but all functioning scales were deviant. Patient-proxy agreement was found in most HRQoL subscales. Three patients (14%) showed indications of anxiety or depression. One-third of the caregivers reported a high caregiver strain or a high burden. Test scores for attention, executive functioning, language, and/or verbal memory were correlated with perceived global health status, cognitive functioning, and/or communication deficits. Caregiver burden was not related to cognitive deficits. CONCLUSIONS: In long-term HGG survivors maintained HRQoL seems possible even when cognition is impaired in a large variety at the individual level. A tailored approach is therefore recommended to investigate the cognitive impairments and HRQoL in patients and the need for patient and caregiver support.


Asunto(s)
Glioma , Calidad de Vida , Humanos , Calidad de Vida/psicología , Cuidadores/psicología , Glioma/psicología , Encuestas y Cuestionarios , Cognición , Sobrevivientes/psicología
2.
Mol Cancer ; 22(1): 129, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563568

RESUMEN

BACKGROUND: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS: Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION: Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT02869243.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Calidad de Vida , Proteína Morfogenética Ósea 4/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/patología , Dosis Máxima Tolerada
3.
Br J Cancer ; 129(8): 1327-1338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620410

RESUMEN

BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Evaluación Preclínica de Medicamentos , Biomarcadores , ADN/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
4.
J Neurooncol ; 163(2): 327-338, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37237151

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Anciano , Glioblastoma/patología , Pronóstico , Neoplasias Encefálicas/patología , Encéfalo/patología , Sobrevivientes
5.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958662

RESUMEN

Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Fenotipo , Genómica , Resistencia a Antineoplásicos/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica
6.
Acta Neurochir (Wien) ; 163(2): 343-350, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32291592

RESUMEN

BACKGROUND: Gamma Knife radiosurgery (GKRS) has been proven to be a successful primary treatment for metastatic brain tumors (BM). BM can come in cystic lesions and are often too large for GKRS. An alternative approach to treat cystic BM is stereotactic cyst aspiration (SCA) for volume reduction, making it suitable for GKRS afterwards. OBJECTIVE: Our objective is evaluation of volumetric reduction after SCA, tumor control, and complications after SCA directly followed by GKRS. METHODS: We performed a retrospective analysis of all patients who underwent SCA directly followed by GKRS at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg between 2002 and 2015. In total, 54 patients had undergone this combined approach. Two patients were excluded because of prior intracranial treatment. The other 52 patients were included for analysis. RESULTS: SCA resulted in a mean volumetric reduction of 56.5% (range 5.50-87.00%). In 83.6% of the tumors (46 tumors), SCA led to sufficient volumetric reduction making GKRS possible. The overall local tumor control (OLTC) of the aspirated lesions post-GKRS was 60.9% (28 out of 46 tumors). Median progression-free survival (PFS) and overall survival (OS) for all patients were 3 (range 5 days-14 months) and 12 months (range 5 days-58 months), respectively. Leptomeningeal disease was reported in 5 (9.6%) cases. CONCLUSION: SCA directly followed by GKRS is an effective and time-efficient treatment for large cystic BM in selected patients in which surgery is contraindicated and those with deeply located lesions.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/mortalidad , Quistes/mortalidad , Quistes/cirugía , Femenino , Humanos , Masculino , Neoplasias Meníngeas/cirugía , Persona de Mediana Edad , Supervivencia sin Progresión , Radiocirugia/métodos , Estudios Retrospectivos , Succión , Resultado del Tratamiento
7.
Mol Biol Rep ; 47(7): 5263-5271, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32607953

RESUMEN

Temozolomide (TMZ) is a chemotherapeutic used for the treatment of glioblastoma. The MGMT repair enzyme (O'-(6)-methyl guanine-DNA-methyltransferase) promoter methylation is a predictive biomarker to TMZ response; interferons (IFNs) type I can downregulate MGMT expression improving survival in patients with unmethylated MGMT promoter. HeberFERON is a co-formulation of IFNs type I and II with higher antiproliferative effect over glioblastoma cell lines than individual IFNs. We investigated the proliferative response of patient-derived glioblastoma cultures to HeberFERON and its combination with TMZ in relation to MGMT promoter methylation and the regulation of MGMT transcript after HeberFERON treatment. Eleven glioblastoma-derived cultures, molecularly classified according to TCGA and MGMT promoter methylation, were assayed for proliferation inhibition with HeberFERON at low doses (1-25 IU/mL) [alone or combined with TMZ] or at higher doses (50-200 IU/mL) using CellTiter-Glo Luminescent Cell Viability Assay (Promega). Eight cultures were further treated with 100 IU/mL of HeberFERON for 72 h, total RNA purified (Qiagen) and converted to cDNA (Superscript III kit, Invitrogen) as quantitative PCR templates. Changes of MGMT&P53 transcripts level were monitored. Response of cultures to HeberFERON is variable, dose-dependent and apparently independent from TCGA classification and MGMT methylation status, based on the eight Classical cultures data. When combining HeberFERON with TMZ there was an increase in cell death for cultures, 2/4 with methylated and 5/5 with unmethylated MGMT promoter. In two out five cultures with unmethylated MGMT status, we observed a decrease of MGMT gene levels and an increase in P53 encoding gene levels. HeberFERON and TMZ combination should be further assayed in glioblastoma, mainly for those with unmethylated MGMT promoter.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/genética , Interferón Tipo I/farmacología , Interferón gamma/farmacología , Temozolomida/farmacología , Proteínas Supresoras de Tumor/genética , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Glioblastoma/metabolismo , Humanos , Regiones Promotoras Genéticas , Células Tumorales Cultivadas
8.
J Proteome Res ; 17(4): 1654-1663, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29457462

RESUMEN

We show that parallel reaction monitoring (PRM) can be used for exact quantification of phosphorylation ratios of proteins using stable-isotope-labeled peptides. We have compared two different PRM approaches on a digest of a U87 cell culture, namely, direct-PRM (tryptic digest measured by PRM without any further sample preparation) and TiO2-PRM (tryptic digest enriched with TiO2 cartridges, followed by PRM measurement); these approaches are compared for the following phosphorylation sites: neuroblast differentiation-associated protein (AHNAK S5480-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), and epidermal growth factor receptor (EGFR S1166-p). A reproducible percentage of phosphorylation could be determined (CV 6-13%) using direct-PRM or TiO2-PRM. In addition, we tested the approaches in a cell culture experiment in which U87 cells were deprived of serum. As a "gold standard" we included immune precipitation of EGFR followed by PRM (IP-PRM). For EGFR (S1166) and AHNAK (S5480) a statistical significant change in the percentage of phosphorylation could be observed as a result of serum deprivation; for EGFR (S1166) this change was observed for both TiO2-PRM and IP-PRM. The presented approach has the potential to multiplex and to quantify the ratio of phosphorylation in a single analysis.


Asunto(s)
Espectrometría de Masas/métodos , Fosforilación , Línea Celular , Receptores ErbB/metabolismo , Humanos , Marcaje Isotópico , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Péptidos
9.
J Neurooncol ; 140(3): 615-622, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30191361

RESUMEN

OBJECTIVE: In recent years, gamma knife radiosurgery (GKRS) has become increasingly more popular as a salvage treatment modality for patients diagnosed with recurrent gliomas. The goal of GKRS for recurrent glioma patients is to improve survival rates with minimal burden for these patients. The emphasis of this report is on local tumor control (TC), clinical outcome and survival analysis. METHODS: We performed a retrospective analysis of prospectively collected data of all patients who underwent GKRS for gliomas at the Gamma Knife Center Tilburg between 23-09-2002 and 21-05-2015. In total, 94 patients with glioma were treated with GKRS. Two patients were excluded because GKRS was used as a first stage treatment. The other 92 patients were included for analysis. RESULTS: TC was 37% for all tumors (TC was 50% in LGGs and 27% in HGGs). Local progression (LP) was 46% for all tumors (LP was 31% in LGGs and 58% in HGGs). New distant lesions were seen in 18% of all patients (in 5% of LGG patients and 31% of HGG patients). Median progression-free and overall survival (PFS and OS) for all patients were 10.5 and 34.4 months, respectively. Median PFS was 50.1 and 5.7 months for low and high grade tumors, respectively. Median OS was 86.6 and 12.8 months for low and high grade tumors, respectively. No serious adverse events were noted post-GKRS. CONCLUSION: GKRS can safely be used as salvage treatment for recurrent glioma and seems to improve survival rates in (high grade) glioma patients with minimal burden.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Recurrencia Local de Neoplasia/radioterapia , Radiocirugia , Terapia Recuperativa , Adolescente , Adulto , Anciano , Niño , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Retrospectivos , Adulto Joven
10.
J Neurooncol ; 133(1): 137-146, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28401374

RESUMEN

Early resection is standard of care for presumed low-grade gliomas. This is based on studies including only tumors that were post-surgically confirmed as low-grade glioma. Unfortunately this does not represent the clinicians' situation wherein he/she has to deal with a lesion on MRI that is suspect for low-grade glioma (i.e. without prior knowledge on the histological diagnosis). We therefore aimed to determine the optimal initial strategy for patients with a lesion suspect for low-grade glioma, but not histologically proven yet. We retrospectively identified 150 patients with a resectable presumed low-grade-glioma and who were otherwise in good clinical condition. In this cohort we compared overall survival between three types of initital treatment strategy: a wait-and-scan approach (n = 38), early resection (n = 83), or biopsy for histopathological verification (n = 29). In multivariate analysis, no difference was observed in overall survival for early resection compared to wait-and-scan: hazard ratio of 0.92 (95% CI 0.43-2.01; p = 0.85). However, biopsy strategy showed a shorter overall survival compared to wait-and-scan: hazard ratio of 2.69 (95% CI 1.19-6.06; p = 0.02). In this cohort we failed to confirm superiority of early resection over a wait-and-scan approach in terms of overall survival, though longer follow-up is required for final conclusion. Biopsy was associated with shorter overall survival.


Asunto(s)
Neoplasias Encefálicas/cirugía , Glioma/cirugía , Adulto , Biopsia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Tratamiento Conservador , Femenino , Estudios de Seguimiento , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Análisis Multivariante , Clasificación del Tumor , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
11.
J Transl Med ; 13: 74, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25886061

RESUMEN

BACKGROUND: The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by poly(ADP-ribose) polymerase protein inhibition(PARPi). The objective of the present study was to investigate the therapeutic benefit of combination therapy in patient-derived glioma stem-like cells (GSC). METHODS: Combination therapy feasibility was tested on established GBM cell lines U373 and T98. We developed an in vitro drug-screening assay based on GSC cultures derived from a panel of primary patient tissue samples (n = 20) to evaluate the effect of PARPi (ABT-888) monotherapy and combination therapy with TMZ. Therapeutic effect was assessed by viability, double stranded breaks, apoptosis and autophagy assays and longitudinal microscopic cell monitoring was performed. O-6-methylguanine-DNA methyltransferase (MGMT) status was determined by methylation assay and protein expression by western blots. RESULTS: PARPi monotherapy was found to decrease viability by more than 25% in 4 of the 20 GSCs (20%) at 10 µM. TMZ monotherapy at 50 µM and 100 µM was effective in 12 and 14 of the 20 GSCs, respectively. TMZ resistance to 100 µM was found in 7 of 8 MGMT protein positive cultures. Potentiation of TMZ therapy through PARPi was found in 90% (n = 20) of GSCs, of which 6 were initially resistant and 7 were sensitive to TMZ monotherapy. Increased induction of double stranded breaks and apoptosis were noted in responsive GSCs. There was a trend noted, albeit statistically insignificant, of increased autophagy both in western blots and accumulation of autophagosomes. CONCLUSION: PARPi mediated potentiation of TMZ is independent of TMZ sensitivity and can override MGMT(-) mediated resistance when administered simultaneously. Response to combination therapy was associated with increased double strand breaks induction, and coincided by increased apoptosis and autophagy. PARPi addition potentiates TMZ treatment in primary GSCs. PARPi could potentially enhance the therapeutic efficacy of the standard of care in GBM.


Asunto(s)
Bencimidazoles/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Glioma/patología , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Bencimidazoles/farmacología , Medio de Cultivo Libre de Suero , Roturas del ADN de Doble Cadena/efectos de los fármacos , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Temozolomida , Células Tumorales Cultivadas
12.
BMC Cancer ; 14: 718, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25256166

RESUMEN

BACKGROUND: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma. METHODS: Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. RESULTS: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. CONCLUSIONS: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases.


Asunto(s)
Análisis Mutacional de ADN , Glioblastoma/enzimología , Glioblastoma/genética , Fosfotransferasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , GTP Fosfohidrolasas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Proteína p53 Supresora de Tumor/genética , Adulto Joven
13.
Front Oncol ; 13: 1218297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260852

RESUMEN

Background: Only a small group of patients with glioblastoma multiforme (GBM) survives more than 36 months, so-called long-term survivors. Recent studies have shown that chromosomal instability (CIN) plays a prognostic and predictive role among different cancer types. Here, we compared histological (chromosome missegregation) and bioinformatic metrics (CIN signatures) of CIN in tumors of GBM typical survivors (≤36 months overall survival), GBM long-term survivors and isocitrate dehydrogenase (IDH)-mutant grade 4 astrocytomas. Methods: Tumor sections of all gliomas were examined for anaphases and chromosome missegregation. Further CIN signature activity analysis in the The Cancer Genome Atlas (TCGA)-GBM cohort was performed. Results: Our data show that chromosome missegregation is pervasive in high grade gliomas and is not different between the 3 groups. We find only limited evidence of altered CIN levels in tumors of GBM long-term survivors relative to the other groups, since a significant depletion in CIN signature 11 relative to GBM typical survivors was the only alteration detected. In contrast, within IDH-mutant grade 4 astrocytomas we detected a significant enrichment of CIN signature 5 and 10 activities and a depletion of CIN signature 1 activity relative to tumors of GBM typical survivors. Conclusions: Our data suggest that CIN is pervasive in high grade gliomas, however this is unlikely to be a major contributor to the phenomenon of long-term survivorship in GBM. Nevertheless, further evaluation of specific types of CIN (signatures) could have prognostic value in patients suffering from grade 4 gliomas.

14.
Cancer Cell ; 41(4): 678-692.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898379

RESUMEN

A better understanding of transcriptional evolution of IDH-wild-type glioblastoma may be crucial for treatment optimization. Here, we perform RNA sequencing (RNA-seq) (n = 322 test, n = 245 validation) on paired primary-recurrent glioblastoma resections of patients treated with the current standard of care. Transcriptional subtypes form an interconnected continuum in a two-dimensional space. Recurrent tumors show preferential mesenchymal progression. Over time, hallmark glioblastoma genes are not significantly altered. Instead, tumor purity decreases over time and is accompanied by co-increases in neuron and oligodendrocyte marker genes and, independently, tumor-associated macrophages. A decrease is observed in endothelial marker genes. These composition changes are confirmed by single-cell RNA-seq and immunohistochemistry. An extracellular matrix-associated gene set increases at recurrence and bulk, single-cell RNA, and immunohistochemistry indicate it is expressed mainly by pericytes. This signature is associated with significantly worse survival at recurrence. Our data demonstrate that glioblastomas evolve mainly by microenvironment (re-)organization rather than molecular evolution of tumor cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Microambiente Tumoral/genética , Neoplasias Encefálicas/patología , Recurrencia Local de Neoplasia/genética , Perfilación de la Expresión Génica , Transcriptoma
15.
Ann Neurol ; 69(3): 455-63, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21446021

RESUMEN

OBJECTIVE: A high percentage of grade II and III gliomas have mutations in the gene encoding isocitrate dehydrogenase (IDH1). This mutation is always a heterozygous point mutation that affects the amino acid arginine at position 132 and results in loss of its native enzymatic activity and gain of alternative enzymatic activity (producing D-2-hydroxyglutarate). The objective of this study was to investigate the cellular effects of R132H mutations in IDH1. METHODS: Functional consequences of IDH1(R132H) mutations were examined among others using fluorescence-activated cell sorting, kinome and expression arrays, biochemical assays, and intracranial injections on 3 different (glioma) cell lines with stable overexpression of IDH1(R132H) . RESULTS: IDH1(R132H) overexpression in established glioma cell lines in vitro resulted in a marked decrease in proliferation, decreased Akt phosphorylation, altered morphology, and a more contact-dependent cell migration. The reduced proliferation is related to accumulation of D-2-hydroxyglutarate that is produced by IDH1(R132H) . Mice injected with IDH1(R132H) U87 cells have prolonged survival compared to mice injected with IDH1(wt) or green fluorescent protein-expressing U87 cells. INTERPRETATION: Our results demonstrate that IDH1(R132H) dominantly reduces aggressiveness of established glioma cell lines in vitro and in vivo. In addition, the IDH1(R132H) -IDH1(wt) heterodimer has higher enzymatic activity than the IDH1(R132H) -IDH1(R132H) homodimer. Our observations in model systems of glioma might lead to a better understanding of the biology of IDH1 mutant gliomas, which are typically low grade and often slow growing.


Asunto(s)
Proliferación Celular , Isocitrato Deshidrogenasa/genética , Mutación Puntual/genética , Animales , Línea Celular Tumoral , Citometría de Flujo , Inmunohistoquímica , Isocitrato Deshidrogenasa/metabolismo , Ratones , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
16.
J Neurooncol ; 108(1): 11-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22270850

RESUMEN

Glioblastoma is the most common and most aggressive primary brain tumor. Despite maximum treatment, patients only have a median survival time of 15 months, because of the tumor's resistance to current therapeutic approaches. Thus far, methylation of the O (6)-methylguanine-DNA methyltransferase (MGMT) promoter has been the only confirmed molecular predictive factor in glioblastoma. Novel "genome-wide" techniques have identified additional important molecular alterations as mutations in isocitrate dehydrogenase 1 (IDH1) and its prognostic importance. This review summarizes findings and techniques of genetic, epigenetic, transcriptional, and proteomic studies of glioblastoma. It provides the clinician with an up-to-date overview of current identified molecular alterations that should ultimately lead to new therapeutic targets and more individualized treatment approaches in glioblastoma.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Epigénesis Genética , Glioblastoma/genética , Humanos , Mutación/genética , Proteómica/métodos
17.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35158868

RESUMEN

Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.

18.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35954371

RESUMEN

Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.

19.
ACS Omega ; 7(4): 3568-3578, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128264

RESUMEN

The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.

20.
Front Oncol ; 12: 1012236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408180

RESUMEN

Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA