Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 387(22): 2045-2055, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449420

RESUMEN

BACKGROUND: Iron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear. METHODS: We conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome. RESULTS: A total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants. CONCLUSIONS: In participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks. (Funded by the European Union Horizon 2020 program; FAIRPARK-II ClinicalTrials.gov number, NCT02655315.).


Asunto(s)
Antiparkinsonianos , Deferiprona , Quelantes del Hierro , Hierro , Enfermedad de Parkinson , Sustancia Negra , Humanos , Deferiprona/administración & dosificación , Deferiprona/efectos adversos , Deferiprona/farmacología , Deferiprona/uso terapéutico , Hierro/análisis , Hierro/metabolismo , Levodopa/uso terapéutico , Neutropenia/inducido químicamente , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Quelantes del Hierro/administración & dosificación , Quelantes del Hierro/efectos adversos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Sustancia Negra/química , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Progresión de la Enfermedad , Método Doble Ciego , Administración Oral , Encéfalo/diagnóstico por imagen , Química Encefálica , Dopaminérgicos/administración & dosificación , Dopaminérgicos/efectos adversos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/efectos adversos , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico
2.
Mov Disord ; 39(1): 64-75, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006282

RESUMEN

BACKGROUND: Clinical presentation and progression dynamics are variable in patients with Parkinson's disease (PD). Disease course mapping is an innovative disease modelling technique that summarizes the range of possible disease trajectories and estimates dimensions related to onset, sequence, and speed of progression of disease markers. OBJECTIVE: To propose a disease course map for PD and investigate progression profiles in patients with or without rapid eye movement sleep behavioral disorders (RBD). METHODS: Data of 919 PD patients and 88 isolated RBD patients from three independent longitudinal cohorts were analyzed (follow-up duration = 5.1; 95% confidence interval, 1.1-8.1] years). Disease course map was estimated by using eight clinical markers (motor and non-motor symptoms) and four imaging markers (dopaminergic denervation). RESULTS: PD course map showed that the first changes occurred in the contralateral putamen 13 years before diagnosis, followed by changes in motor symptoms, dysautonomia, sleep-all before diagnosis-and finally cognitive decline at the time of diagnosis. The model showed earlier disease onset, earlier non-motor and later motor symptoms, more rapid progression of cognitive decline in PD patients with RBD than PD patients without RBD. This pattern was even more pronounced in patients with isolated RBD with early changes in sleep, followed by cognition and non-motor symptoms and later changes in motor symptoms. CONCLUSIONS: Our findings are consistent with the presence of distinct patterns of progression between patients with and without RBD. Understanding heterogeneity of PD progression is key to decipher the underlying pathophysiology and select homogeneous subgroups of patients for precision medicine. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico , Polisomnografía , Cognición
3.
Mov Disord ; 39(7): 1190-1202, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666582

RESUMEN

BACKGROUND: In early-stage Parkinson's disease (PD), rapid eye movement (REM) sleep behavior disorder (RBD) predicts poor cognitive and motor outcome. However, the baseline significance and disease evolution associated with isolated REM sleep without atonia (iRWA, ie, enhanced muscle tone during 8.7% of REM sleep, but no violent behavior) are not well understood. OBJECTIVES: The objective is to determine whether iRWA was a mild form of RBD and progressed similarly over time. METHODS: Participants with early PD (<4 years from medical diagnosis) were included from 2014 to 2021 in a longitudinal study. They underwent interviews and examinations in the motor, cognitive, autonomous, psychiatric, sensory, and sleep domains every year for 4 years along with a video polysomnography and magnetic resonance imaging examination of the locus coeruleus/subcoeruleus complex (LC/LsC) at baseline. The clinical characteristics were compared between groups with normal REM sleep, with iRWA and with RBD, at baseline and for 4 years. RESULTS: Among 159 PD participants, 25% had RBD, 25% had iRWA, and 50% had normal REM sleep. At baseline, the non-motor symptoms were less prevalent and the LC/LsC signal intensity was more intense in participants with iRWA than with RBD. Over 4 years, participants with normal REM sleep and with iRWA had a similar cognitive and motor trajectory, whereas participants with RBD had greater cognitive and motor decline. CONCLUSIONS: We demonstrated that iRWA is frequent in early PD, but is not a milder form of RBD. Both groups have distinct baseline characteristics and clinical trajectories. They should be distinguished in clinical routine and research protocols. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Polisomnografía , Trastorno de la Conducta del Sueño REM , Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Sueño REM/fisiología , Estudios Longitudinales , Imagen por Resonancia Magnética
4.
Mov Disord ; 39(5): 825-835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38486423

RESUMEN

BACKGROUND: International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. OBJECTIVES: To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine-learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. MATERIALS: Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2-year follow-up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 ("Clin1"); (2) MRI visual reading blinded to the clinical diagnosis ("MRI"); (3) both MRI visual reading and clinical criteria at V1 ("MRI and Clin1"), and (4) a machine-learning algorithm ("Algorithm"). The gold standard diagnosis was established by expert consensus after a 2-year follow-up. RESULTS: We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit ("Clin1": balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% ("MRI": 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit ("MRI and Clin1": 85.4%; P < 0.0001). The algorithm achieved a diagnostic gain of 9.9% ("Algorithm": 76.1%; P = 0.08). CONCLUSION: Our study shows the use of MRI analysis, whether by visual reading or machine-learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Diagnóstico Precoz , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Anciano , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/diagnóstico , Aprendizaje Automático , Incertidumbre , Diagnóstico Diferencial , Sensibilidad y Especificidad
5.
Brain ; 146(8): 3301-3318, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826230

RESUMEN

Isolated rapid eye movement sleep behaviour disorder (iRBD) is a sleep disorder characterized by the loss of rapid eye movement sleep muscle atonia and the appearance of abnormal movements and vocalizations during rapid eye movement sleep. It is a strong marker of incipient synucleinopathy such as dementia with Lewy bodies and Parkinson's disease. Patients with iRBD already show brain changes that are reminiscent of manifest synucleinopathies including brain atrophy. However, the mechanisms underlying the development of this atrophy remain poorly understood. In this study, we performed cutting-edge imaging transcriptomics and comprehensive spatial mapping analyses in a multicentric cohort of 171 polysomnography-confirmed iRBD patients [67.7 ± 6.6 (49-87) years; 83% men] and 238 healthy controls [66.6 ± 7.9 (41-88) years; 77% men] with T1-weighted MRI to investigate the gene expression and connectivity patterns associated with changes in cortical thickness and surface area in iRBD. Partial least squares regression was performed to identify the gene expression patterns underlying cortical changes in iRBD. Gene set enrichment analysis and virtual histology were then done to assess the biological processes, cellular components, human disease gene terms, and cell types enriched in these gene expression patterns. We then used structural and functional neighbourhood analyses to assess whether the atrophy patterns in iRBD were constrained by the brain's structural and functional connectome. Moreover, we used comprehensive spatial mapping analyses to assess the specific neurotransmitter systems, functional networks, cytoarchitectonic classes, and cognitive brain systems associated with cortical changes in iRBD. All comparisons were tested against null models that preserved spatial autocorrelation between brain regions and compared to Alzheimer's disease to assess the specificity of findings to synucleinopathies. We found that genes involved in mitochondrial function and macroautophagy were the strongest contributors to the cortical thinning occurring in iRBD. Moreover, we demonstrated that cortical thinning was constrained by the brain's structural and functional connectome and that it mapped onto specific networks involved in motor and planning functions. In contrast with cortical thickness, changes in cortical surface area were related to distinct genes, namely genes involved in the inflammatory response, and to different spatial mapping patterns. The gene expression and connectivity patterns associated with iRBD were all distinct from those observed in Alzheimer's disease. In summary, this study demonstrates that the development of brain atrophy in synucleinopathies is constrained by specific genes and networks.


Asunto(s)
Enfermedad de Alzheimer , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Masculino , Humanos , Femenino , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/genética , Enfermedad de Alzheimer/patología , Adelgazamiento de la Corteza Cerebral/patología , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/genética , Trastorno de la Conducta del Sueño REM/complicaciones , Mitocondrias/metabolismo , Atrofia/patología
6.
Radiology ; 308(3): e223255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668523

RESUMEN

Background Noninvasive identification of glioma subtypes is important for optimizing treatment strategies. Purpose To compare the in vivo neurochemical profiles between isocitrate dehydrogenase (IDH) 1-mutant 1p/19q codeleted gliomas and their noncodeleted counterparts measured by MR spectroscopy at 3.0 T with a point-resolved spectroscopy (PRESS) sequence optimized for D-2-hydroxyglutarate (2HG) detection. Materials and Methods Adults with IDH1-mutant gliomas were retrospectively included for this study from two university hospitals (inclusion period: January 2015 to July 2016 and September 2019 to June 2021, respectively) based on availability of 1p/19q codeletion status and a PRESS acquisition optimized for 2HG detection (echo time, 97 msec) at 3.0 T before any treatment. Spectral analysis was performed using LCModel and a simulated basis set. Metabolite quantification was performed using the water signal as a reference and correcting for water and metabolite longitudinal and transverse relaxation time constants. Concentration ratios were computed using total creatine (tCr) and total choline. A two-tailed unpaired t test was used to compare metabolite concentrations obtained in codeleted versus noncodeleted gliomas, accounting for multiple comparisons. Results Thirty-one adults (mean age, 39 years ± 8 [SD]; 19 male) were included, and 19 metabolites were quantified. Cystathionine concentration was higher in codeleted (n = 13) than noncodeleted (n = 18) gliomas when quantification was performed using the water signal or tCr as references (2.33 mM ± 0.98 vs 0.93 mM ± 0.94, and 0.34 mM ± 0.14 vs 0.14 mM ± 0.14, respectively; both P < .001). The sensitivity and specificity of PRESS to detect codeletion by means of cystathionine quantification were 92% and 61%, respectively. Other metabolites did not show evidence of a difference between groups (P > .05). Conclusion Higher cystathionine levels were detected in IDH1-mutant 1p/19q codeleted gliomas than in their noncodeleted counterparts with use of a PRESS sequence optimized for 2HG detection. Of 19 metabolites quantified, only cystathionine showed evidence of a difference in concentration between groups. Clinical trial registry no. NCT01703962 © RSNA, 2023 See also the editorial by Lin in this issue.


Asunto(s)
Cistationina , Glioma , Adulto , Humanos , Masculino , Creatina , Glioma/diagnóstico por imagen , Glioma/genética , Espectroscopía de Resonancia Magnética , Receptores de Antígenos de Linfocitos T , Estudios Retrospectivos , Agua , Femenino , Persona de Mediana Edad
7.
Radiology ; 306(3): e220430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36318030

RESUMEN

Background The time course of cellular damage after acute ischemic stroke (IS) is currently not well known, and specific noninvasive markers of microstructural alterations linked to inflammation are lacking, which hinders the monitoring of anti-inflammatory treatment. Purpose To evaluate the temporal pattern of neuronal and glial microstructural changes after stroke using in vivo single-voxel diffusion-weighted MR spectroscopy. Materials and Methods In this prospective longitudinal study, participants with IS and healthy volunteers (HVs) underwent MRI at 3.0 T. In participants with IS, apparent diffusion coefficients (ADCs) and concentrations of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in volumes of interest (VOIs), including the lesion VOI (VOIles) and the contralateral VOI (VOIcl) at 2 weeks, 1 month, and 3 months after IS. HVs were examined once, with VOIs located in the same brain regions as participants with IS. Within- and between-group differences and longitudinal changes were examined using linear mixed-effects models. Results Twenty participants with IS (mean age, 61 years ± 13 [SD]; 12 women) and 20 HVs (mean age, 59 years ± 13; 12 women) were evaluated. No differences in ADCs or concentrations were observed in VOIcl between HVs and participants with IS. In participants with IS, the ADC of tCr was higher in VOIles than in VOIcl at 1 month (+14.4%, P = .004) and 3 months after IS (+19.0%, P < .001), while the ADC of tCho was higher only at 1 month (+16.7%, P = .001). No difference in the ADC of tNAA was observed between the two VOIs at any time point. tNAA and tCr concentrations were lower in VOIles than in VOIcl and were stable over time (approximately -50% and -30%, respectively; P < .001). Conclusion High diffusivity of choline-containing compounds and total creatine (tCr) in the ischemic lesion 1 month after ischemic stroke (IS) indicates glial morphologic changes, suggesting that active inflammation is still ongoing at this time point. High tCr diffusivity up to 3 months after IS likely reflects the presence of astrogliosis at the chronic stage of cerebral ischemia. Clinical trial registration no. NCT02833961 © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Humanos , Femenino , Persona de Mediana Edad , Creatina , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Estudios Longitudinales , Estudios Prospectivos , Espectroscopía de Resonancia Magnética/métodos , Isquemia Encefálica/diagnóstico por imagen , Colina , Receptores de Antígenos de Linfocitos T
8.
Mov Disord ; 38(3): 479-484, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592065

RESUMEN

BACKGROUND: The locus coeruleus/subcoeruleus complex (LC/LsC) is a structure comprising melanized noradrenergic neurons. OBJECTIVE: To study the LC/LsC damage across Parkinson's disease (PD) and atypical parkinsonism in a large group of subjects. METHODS: We studied 98 healthy control subjects, 47 patients with isolated rapid eye movement sleep behavior disorder (RBD), 75 patients with PD plus RBD, 142 patients with PD without RBD, 19 patients with progressive supranuclear palsy (PSP), and 19 patients with multiple system atrophy (MSA). Twelve patients with MSA had proven RBD. LC/LsC signal intensity was derived from neuromelanin magnetic resonance imaging using automated software. RESULTS: The signal intensity was reduced in all parkinsonian syndromes compared with healthy control subjects, except in PD without RBD. The signal intensity decreased as age increased. Moreover, the signal intensity was lower in MSA than in isolated RBD and PD without RBD groups. In PD, the signal intensity correlated negatively with the percentage of REM sleep without atonia. There were no differences in signal intensity between PD plus RBD, PSP, and MSA. CONCLUSIONS: Neuromelanin signal intensity was reduced in all parkinsonian disorders, except in PD without RBD. The presence of RBD in parkinsonian disorders appears to be associated with lower neuromelanin signal intensity. Furthermore, lower LC/LsC signal changes in PSP could be partly caused by the effect of age. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Trastornos Parkinsonianos/complicaciones , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/patología , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética/métodos
9.
Brain ; 145(9): 3162-3178, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35594873

RESUMEN

Isolated REM sleep behaviour disorder (iRBD) is a synucleinopathy characterized by abnormal behaviours and vocalizations during REM sleep. Most iRBD patients develop dementia with Lewy bodies, Parkinson's disease or multiple system atrophy over time. Patients with iRBD exhibit brain atrophy patterns that are reminiscent of those observed in overt synucleinopathies. However, the mechanisms linking brain atrophy to the underlying alpha-synuclein pathophysiology are poorly understood. Our objective was to investigate how the prion-like and regional vulnerability hypotheses of alpha-synuclein might explain brain atrophy in iRBD. Using a multicentric cohort of 182 polysomnography-confirmed iRBD patients who underwent T1-weighted MRI, we performed vertex-based cortical surface and deformation-based morphometry analyses to quantify brain atrophy in patients (67.8 years, 84% male) and 261 healthy controls (66.2 years, 75%) and investigated the morphological correlates of motor and cognitive functioning in iRBD. Next, we applied the agent-based Susceptible-Infected-Removed model (i.e. a computational model that simulates in silico the spread of pathologic alpha-synuclein based on structural connectivity and gene expression) and tested if it recreated atrophy in iRBD by statistically comparing simulated regional brain atrophy to the atrophy observed in patients. The impact of SNCA and GBA gene expression and brain connectivity was then evaluated by comparing the model fit to the one obtained in null models where either gene expression or connectivity was randomized. The results showed that iRBD patients present with cortical thinning and tissue deformation, which correlated with motor and cognitive functioning. Next, we found that the computational model recreated cortical thinning (r = 0.51, P = 0.0007) and tissue deformation (r = 0.52, P = 0.0005) in patients, and that the connectome's architecture along with SNCA and GBA gene expression contributed to shaping atrophy in iRBD. We further demonstrated that the full agent-based model performed better than network measures or gene expression alone in recreating the atrophy pattern in iRBD. In summary, atrophy in iRBD is extensive, correlates with motor and cognitive function and can be recreated using the dynamics of agent-based modelling, structural connectivity and gene expression. These findings support the concepts that both prion-like spread and regional susceptibility account for the atrophy observed in prodromal synucleinopathies. Therefore, the agent-based Susceptible-Infected-Removed model may be a useful tool for testing hypotheses underlying neurodegenerative diseases and new therapies aimed at slowing or stopping the spread of alpha-synuclein pathology.


Asunto(s)
Enfermedades Neurodegenerativas , Priones , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Anciano , Atrofia/patología , Encéfalo/patología , Adelgazamiento de la Corteza Cerebral , Femenino , Expresión Génica , Humanos , Masculino , Enfermedades Neurodegenerativas/patología , Priones/metabolismo , Trastorno de la Conducta del Sueño REM/metabolismo , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Magn Reson Med ; 88(2): 537-545, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35381117

RESUMEN

PURPOSE: To evaluate the ability of the PRESS sequence (TE  = 97 ms, optimized for 2-hydroxyglutarate detection) to detect cystathionine in gliomas and the effect of the omission of cystathionine on the quantification of the full neurochemical profile. METHODS: Twenty-three subjects with a glioma were retrospectively included based on the availability of both MEGA-PRESS and PRESS acquisitions at 3T, and the presence of the cystathionine signal in the edited MR spectrum. In eight subjects, the PRESS acquisition was performed also in normal tissue. Metabolite quantification was performed using LCModel and simulated basis sets. The LCModel analysis for the PRESS data was performed with and without cystathionine. RESULTS: All subjects with glioma had detectable cystathionine levels >1 mM with Cramér-Rao lower bounds (CRLB) <15%. The mean cystathionine concentrations were 3.49 ± 1.17 mM for MEGA-PRESS and 2.20 ± 0.80 mM for PRESS data. Cystathionine concentrations showed a significant correlation between the two MRS methods (r = 0.58, p = .004), and it was not detectable in normal tissue. Using PRESS, 19 metabolites were quantified with CRLB <50% for more than half of the subjects. The metabolites that were significantly (p < .0028) and mostly affected by the omission of cystathionine were aspartate, betaine, citrate, γ-aminobutyric acid (GABA), and serine. CONCLUSIONS: Cystathionine was detectable by PRESS in all the selected gliomas, while it was not detectable in normal tissue. The omission from the spectral analysis of cystathionine led to severe biases in the quantification of other neurochemicals that may play key roles in cancer metabolism.


Asunto(s)
Neoplasias Encefálicas , Glioma , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Cistationina , Glioma/patología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Estudios Retrospectivos
11.
Mov Disord ; 37(4): 724-733, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936123

RESUMEN

BACKGROUND: Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE: The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS: We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS: Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS: The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Conectoma , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética , Vaina de Mielina , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra , Sustancia Blanca/diagnóstico por imagen
12.
Mov Disord ; 37(5): 1064-1069, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102604

RESUMEN

BACKGROUND: Isolated REM sleep behavior disorder (iRBD) is considered a prodromal stage of parkinsonism. Neurodegenerative changes in the substantia nigra pars compacta (SNc) in parkinsonism can be detected using neuromelanin-sensitive MRI. OBJECTIVE: To investigate SNc neuromelanin changes in iRBD patients using fully automatic segmentation. METHODS: We included 47 iRBD patients, 134 early Parkinson's disease (PD) patients and 55 healthy volunteers (HVs) scanned at 3 Tesla. SNc regions-of-interest were delineated automatically using convolutional neural network. SNc volumes, volumes corrected by total intracranial volume, signal-to-noise ratio (SNR) and contrast-to-noise ratio were computed. One-way general linear models (GLM) analysis of covariance (ANCOVA) was conducted while adjusting for age and sex. RESULTS: All SNc measurements differed significantly between the three groups (except SNR in iRBD). Changes in iRBD were intermediate between those in PD and HVs. CONCLUSIONS: Using fully automated SNc segmentation method and neuromelanin-sensitive imaging, iRBD patients showed neurodegenerative changes in the SNc at a lower level than in PD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Parkinson , Trastornos Parkinsonianos , Trastorno de la Conducta del Sueño REM , Humanos , Imagen por Resonancia Magnética/métodos , Melaninas , Enfermedad de Parkinson/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen
13.
Mov Disord ; 37(6): 1245-1255, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347754

RESUMEN

BACKGROUND: Neurodegeneration in the substantia nigra pars compacta (SNc) in parkinsonian syndromes may affect the nigral territories differently. OBJECTIVE: The objective of this study was to investigate the regional selectivity of neurodegenerative changes in the SNc in patients with Parkinson's disease (PD) and atypical parkinsonism using neuromelanin-sensitive magnetic resonance imaging (MRI). METHODS: A total of 22 healthy controls (HC), 38 patients with PD, 22 patients with progressive supranuclear palsy (PSP), 20 patients with multiple system atrophy (MSA, 13 with the parkinsonian variant, 7 with the cerebellar variant), 7 patients with dementia with Lewy body (DLB), and 4 patients with corticobasal syndrome were analyzed. volume and signal-to-noise ratio (SNR) values of the SNc were derived from neuromelanin-sensitive MRI in the whole SNc. Analysis of signal changes was performed in the sensorimotor, associative, and limbic territories of the SNc. RESULTS: SNc volume and corrected volume were significantly reduced in PD, PSP, and MSA versus HC. Patients with PSP had lower volume, corrected volume, SNR, and contrast-to-noise ratio than HC and patients with PD and MSA. Patients with PSP had greater SNR reduction in the associative region than HC and patients with PD and MSA. Patients with PD had reduced SNR in the sensorimotor territory, unlike patients with PSP. Patients with MSA did not differ from patients with PD. CONCLUSIONS: This study provides the first MRI comparison of the topography of neuromelanin changes in parkinsonism. The spatial pattern of changes differed between PSP and synucleinopathies. These nigral topographical differences are consistent with the topography of the extranigral involvement in parkinsonian syndromes. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Imagen por Resonancia Magnética/métodos , Melaninas , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología
14.
Brain ; 144(10): 3114-3125, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33978742

RESUMEN

In Parkinson's disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson's disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson's disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson's disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal intergroup difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson's disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; and voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Hierro/metabolismo , Melaninas/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Anciano , Estudios de Cohortes , Cuerpo Estriado/diagnóstico por imagen , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Estudios Prospectivos , Sustancia Negra/diagnóstico por imagen , Factores de Tiempo
15.
Cereb Cortex ; 32(1): 216-230, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34590113

RESUMEN

Action selection refers to the decision regarding which action to perform in order to reach a desired goal, that is, the "what" component of intention. Whether the action is freely chosen or externally instructed involves different brain networks during the selection phase, but it is assumed that the way an action is selected should not influence the subsequent execution phase of the same movement. Here, we aim to test this hypothesis by investigating whether the modality of movement selection influences the brain networks involved during the execution phase of the movement. Twenty healthy volunteers performed a delayed response task in an event-related functional magnetic resonance imaging design to compare freely chosen and instructed unimanual or bimanual movements during the execution phase. Using activation analyses, we found that the pre-supplementary motor area (preSMA) and the parietal and cerebellar areas were more activated during the execution phase of freely chosen as compared to instructed movements. Connectivity analysis showed an increase of information flow between the right posterior parietal cortex and the cerebellum for freely chosen compared to instructed movements. We suggest that the parieto-cerebellar network is particularly engaged during freely chosen movement to monitor the congruence between the intentional content of our actions and their outcome.


Asunto(s)
Mapeo Encefálico , Desempeño Psicomotor , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética , Movimiento/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
16.
Neuroimage ; 224: 117425, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035669

RESUMEN

The intra-axonal water exchange time (τi), a parameter associated with axonal permeability, could be an important biomarker for understanding and treating demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct comparison with histology. We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters (intra-axonal volume fraction f: R2 =0.99, τi: R2 =0.84, intrinsic diffusivity d: R2 =0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse model of demyelination, comparing the results from two cohorts of mice, CPZ (N=8) and healthy age-matched wild-type (WT, N=8). We find that the RF model estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly correlated with the EM measurements (ρ = 0.98 for f, ρ = 0.82 for τi). Finally, we find a statistically significant decrease in τi in all three regions of the corpus callosum (splenium/genu/body) of the CPZ cohort (<τi>=310ms/330ms/350ms) compared to the WT group (<τi>=370ms/370ms/380ms). This is in line with our expectations that τi is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal permeability .


Asunto(s)
Axones/patología , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/diagnóstico por imagen , Aprendizaje Automático , Sustancia Blanca/diagnóstico por imagen , Animales , Axones/metabolismo , Axones/ultraestructura , Simulación por Computador , Cuerpo Calloso/ultraestructura , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Electrónica , Inhibidores de la Monoaminooxidasa/toxicidad , Método de Montecarlo , Permeabilidad , Sustancia Blanca/patología
17.
Curr Opin Neurol ; 34(4): 514-524, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010220

RESUMEN

PURPOSE OF REVIEW: Differential diagnosis of Parkinsonism may be difficult. The objective of this review is to present the work of the last three years in the field of imaging for diagnostic categorization of parkinsonian syndromes focusing on progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). RECENT FINDINGS: Two main complementary approaches are being pursued. The first seeks to develop and validate manual qualitative or semi-quantitative imaging markers that can be easily used in clinical practice. The second is based on quantitative measurements of magnetic resonance imaging abnormalities integrated in a multimodal approach and in automatic categorization machine learning tools. SUMMARY: These two complementary approaches obtained high diagnostic around 90% and above in the classical Richardson form of PSP and probable MSA. Future work will determine if these techniques can improve diagnosis in other PSP variants and early forms of the diseases when all clinical criteria are not fully met.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Neuroimagen , Enfermedad de Parkinson/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen
18.
NMR Biomed ; 34(5): e4206, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930768

RESUMEN

Diffusion-weighted (DW-) MRS investigates non-invasively microstructural properties of tissue by probing metabolite diffusion in vivo. Despite the growing interest in DW-MRS for clinical applications, little has been published on the reproducibility of this technique. In this study, we explored the optimization of a single-voxel DW-semi-LASER sequence for clinical applications at 3 T, and evaluated the reproducibility of the method under different experimental conditions. DW-MRS measurements were carried out in 10 healthy participants and repeated across three sessions. Metabolite apparent diffusion coefficients (ADCs) were calculated from mono-exponential fits (ADCexp ) up to b = 3300 s/mm2 , and from the diffusional kurtosis approach (ADCK ) up to b = 7300 s/mm2 . The inter-subject variabilities of ADCs of N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine, choline containing compounds, and myo-inositol were calculated in the posterior cingulate cortex (PCC) and in the corona radiata (CR). We explored the effect of physiological motion on the DW-MRS signal and the importance of cardiac gating and peak thresholding to account for signal amplitude fluctuations. Additionally, we investigated the dependence of the intra-subject variability on the acquisition scheme using a bootstrapping resampling method. Coefficients of variation were lower in PCC than CR, likely due to the different sensitivities to motion artifacts of the two regions. Finally, we computed coefficients of repeatability for ADCexp and performed power calculations needed for designing clinical studies. The power calculation for ADCexp of tNAA showed that in the PCC seven subjects per group are sufficient to detect a difference of 5% between two groups with an acquisition time of 4 min, suggesting that ADCexp of tNAA is a suitable marker for disease-related intracellular alteration even in small case-control studies. In the CR, further work is needed to evaluate the voxel size and location that minimize the motion artifacts and variability of the ADC measurements.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Rayos Láser , Adulto , Difusión , Dipéptidos , Estudios de Factibilidad , Femenino , Corazón/diagnóstico por imagen , Humanos , Masculino , Reproducibilidad de los Resultados , Tamaño de la Muestra , Factores de Tiempo , Adulto Joven
19.
NMR Biomed ; 34(4): e4480, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480101

RESUMEN

Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.


Asunto(s)
Encéfalo/metabolismo , Cuprizona/toxicidad , Inflamación/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neuroglía/patología , Animales , Colina/metabolismo , Imagen de Difusión por Resonancia Magnética , Femenino , Inmunohistoquímica , Inositol/metabolismo , Ratones , Ratones Endogámicos C57BL
20.
Mov Disord ; 36(7): 1592-1602, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751655

RESUMEN

BACKGROUND: Development of reliable and accurate imaging biomarkers of dopaminergic cell neurodegeneration is necessary to facilitate therapeutic drug trials in Parkinson's disease (PD). Neuromelanin-sensitive MRI techniques have been effective in detecting neurodegeneration in the substantia nigra pars compacta (SNpc). The objective of the current study was to investigate longitudinal neuromelanin signal changes in the SNpc in PD patients. METHODS: In this prospective, longitudinal, observational case-control study, we included 140 PD patients and 64 healthy volunteers divided into 2 cohorts. Cohort I included 99 early PD patients (disease duration, 1.5 ± 1.0 years) and 41 healthy volunteers analyzed at baseline (V1), where 79 PD patients and 32 healthy volunteers were rescanned after 2.0 ± 0.2 years of follow-up (V2). Cohort II included 41 progressing PD patients (disease duration, 9.3 ± 3.7 years) and 23 healthy volunteers at V1, where 30 PD patients were rescanned after 2.4 ± 0.5 years of follow-up. Subjects were scanned at 3 T MRI using 3-dimensional T1-weighted and neuromelanin-sensitive imaging. Regions of interest were delineated manually to calculate SN volumes, volumes corrected by total intracranial volume, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS: Results showed (1) significant reduction in volume and volume corrected by total intracranial volume between visits, greater in progressing PD than nonsignificant changes in healthy volunteers; (2) no significant effects of visit for signal intensity (signal-to-noise ratio); (3) significant interaction in volume between group and visit; (4) greater volume corrected by total intracranial volume at baseline in female patients and greater decrease in volume and increase in the contrast-to-noise ratio in progressing female PD patients compared with male patients; and (5) correlations between neuromelanin SN changes and disease severity and duration. CONCLUSIONS: We observed a progressive and measurable decrease in neuromelanin-based SN signal and volume in PD, which might allow a direct noninvasive assessment of progression of SN loss and could represent a target biomarker for disease-modifying treatments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Melaninas , Enfermedad de Parkinson/diagnóstico por imagen , Estudios Prospectivos , Sustancia Negra/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA