Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 14(30): e1800870, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29943418

RESUMEN

Plasmonic metal nanostructures are widely used as subwavelength light concentrators to enhance light harvesting of organic solar cells through two photophysical effects, including enhanced local electric field (ELEF) and antenna-amplified light scattering (AALS), while their adverse quenching effect from surface energy transfer (SET) should be suppressed. In this work, a comprehensive study to unambiguously distinguish and quantitatively determine the specific influence and contribution of each effect on the overall performance of organic solar cells incorporated with Ag@SiO2 core-shell nanoparticles (NPs) is presented. By investigating the photon conversion efficiency (PCE) as a function of the SiO2 shell thickness, a strong competition between the ELEF and SET effects in the performance of the devices with the NPs embedded in the active layers is found, leading to a maximum PCE enhancement of 12.4% at the shell thickness of 5 nm. The results give new insights into the fundamental understanding of the photophysical mechanisms responsible for the performance enhancement of plasmonic organic solar cells and provide important guidelines for designing more-efficient plasmonic solar cells in general.

2.
Inorg Chem ; 57(14): 8200-8204, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29939734

RESUMEN

The influence of plasmonic effect on the upconversion emission characteristics of Yb3+-Er3+-Tm3+ tridoped ß-NaYF4 hexagonal microrods is studied. Upconversion spontaneous emission can be improved by 10 times if the microrod is deposited on an Ag-coated substrate. The enhancement is also dependent on the emission wavelength and the polarization of the excitation source. Furthermore, upconversion lasing is supported by the geometry of the microrods via the formation of whispering gallery modes. The corresponding excitation threshold can also be reduced by 50% through the influence of plasmonic effect, the coupling between the whispering gallery modes and the surface plasmonic resonance modes.

3.
Angew Chem Int Ed Engl ; 56(5): 1283-1288, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28004466

RESUMEN

Detailed understanding of the interaction between a chiral molecule and a noble metal surface is essential to rationalize and advance interfacial self-assembly of amino acids and metal-mediated anchoring of proteins. Here we demonstrate that individual Au@Ag core-shell nanocuboids can serve as a plasmonic reporter of an extended helical network formed among chemisorbed cysteine molecules, through generating an interband absorption enhanced, Ag-surface-exclusive circular dichroism (CD) band in the UV region. The observed unusual, strong CD response in the hybrid Au@Ag-cysteine system can be used to probe in real time conformational evolution and structural rearrangement of biomolecules in general and also monitor the interfacial interaction between a metal surface and an adsorbed molecule, opening up the possibility of using Ag nanostructures as promising stereochemically attuned nanosensors.

4.
Opt Express ; 24(17): 19517-30, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557229

RESUMEN

We demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface. The hybridized surface phonon polariton modes also provide a stronger field enhancement compared to conventional pure mode excitation.

5.
Small ; 10(3): 576-83, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24000095

RESUMEN

It is demonstrated herein both theoretically and experimentally that Young's interference can be observed in plasmonic structures when two or three nanoparticles with separation on the order of the wavelength are illuminated simultaneously by a plane wave. This effect leads to the formation of intermediate-field hybridized modes with a character distinct of those mediated by near-field and/or far-field radiative effects. The physical mechanism for the enhancement of absorption and scattering of light due to plasmonic Young's interference is revealed, which we explain through a redistribution of the Poynting vector field and the formation of near-field subwavelength optical vortices.


Asunto(s)
Partículas Elementales , Nanopartículas/química , Dispersión de Radiación , Difracción de Rayos X , Absorción , Dimerización , Nanopartículas/ultraestructura , Espectrometría de Fluorescencia , Termodinámica
6.
Phys Chem Chem Phys ; 15(29): 12308-13, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23774995

RESUMEN

We present studies of high-order harmonic generation (HHG) in laser ablation plumes of the ribonucleic acid nucleobase uracil and its deoxyribonucleic acid counterpart thymine. Harmonics were generated using 780 nm, 30 fs and 1300 nm, 40 fs radiation upon ablation with 1064 nm, 10 ns or 780 nm, 160 ps pulses. Strong HHG signals were observed from uracil plumes with harmonics emitted with photon energies >55 eV. Results obtained in uracil plumes were compared with those from thymine, which did not yield signs of harmonic generation. The ablation plumes of the two compounds were examined by collection of the ablation debris on a silicon substrate placed in close proximity to the target and by time-of-flight mass spectrometry. From this evidence we conclude that the differences in HHG signal are due to the different fragmentation dynamics of the molecules in the plasma plume. These studies constitute the first attempt to analyse differences in structural properties of complex molecules through plasma ablation-induced HHG spectroscopy.


Asunto(s)
Timina/química , Uracilo/química , Rayos Infrarrojos , Espectrometría de Masas , Silicio/química
7.
Nano Lett ; 12(4): 2101-6, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22448815

RESUMEN

Plasmonic resonances with a Fano lineshape observed in metallic nanoclusters often arise from the destructive interference between a dark, subradiant mode and a bright, super-radiant one. A flexible control over the Fano profile characterized by its linewidth and spectral contrast is crucial for many potential applications such as slowing light and biosensing. In this work, we show how one can easily but significantly tailor the overall spectral profile in plasmonic nanocluster systems, for example, quadrumers and pentamers, by selectively altering the particle shape without a need to change the particle size, interparticle distance, or the number of elements of the oligomers. This is achieved through decomposing the whole spectrum into two separate contributions from subgroups, which are efficiently excited at their spectral peak positions. We further show that different strengths of interference between the two subgroups must be considered for a full understanding of the resulting spectral lineshape. In some cases, each subgroup is separately active in distinct frequency windows with only small overlap, leading to a simple convolution of the subspectra. Variation in particle shape of either subgroup results in the tuning of the overall spectral lineshape, which opens a novel pathway for shaping the plasmonic response in small nanoclusters.

8.
Nano Lett ; 12(2): 780-6, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22273268

RESUMEN

Defects are known to affect nanoscale phase transitions, but their specific role in the metal-to-insulator transition in VO(2) has remained elusive. By combining plasmon resonance nanospectroscopy with density functional calculations, we correlate decreased phase-transition energy with oxygen vacancies created by strain at grain boundaries. By measuring the degree of metallization in the lithographically defined VO(2) nanoparticles, we find that hysteresis width narrows with increasing size, thus illustrating the potential for domain boundary engineering in phase-changing nanostructures.

10.
Opt Express ; 20(5): 4893-902, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22418295

RESUMEN

Surface Plasmon Polaritons (SPPs) are excited at the interface between a thin gold film and air via the illumination of nanoslits etched into the film. The coupling efficiency to the two propagation directions away from the slits is determined by leakage radiation microscopy, when the angle of incidence of the pump beam is changed from 0° to 20°. We find that preferential coupling of SPPs into one direction can be achieved for non-normal incidence in the case of single slits and slit pairs. The proportion of SPP excited into one direction can be in excess of 90%. We further provide a simple model of the process, and directly compare the performances of the two approaches.


Asunto(s)
Oro/química , Interferometría/métodos , Microscopía/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fotometría/métodos , Resonancia por Plasmón de Superficie/métodos , Luz , Ensayo de Materiales , Dispersión de Radiación
11.
Phys Rev Lett ; 108(2): 023901, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324685

RESUMEN

Metallic structures with sharp corners harvest the energy of incident light through plasmonic resonances, concentrating it in the corners and greatly increasing the local energy density. Despite its wide array of applications, this effect is normally strongly dependent on how sharp the corners are, presenting problems for fabrication. In this Letter, an analytical approach is proposed, based on transformation optics, to investigate a general class of plasmonic nanostructures with blunt edges or corners. Comprehensive discussions are provided on how the geometry affects the local field enhancement as well as the frequency and energy of each plasmonic resonance. Remarkably, our results evidence the possibility of designing broadband light harvesting devices with an absorption property insensitive to the geometry bluntness.

12.
Nanotechnology ; 23(27): 275501, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22706598

RESUMEN

We study numerically and analytically the refractive index sensing sensitivities of surface plasmon (S(SP)) and waveguide (S(WG)) modes arising from one-dimensional Au gratings. By using rigorous coupled wave analysis, we find that while S(SP) is mainly controlled by the periodicity of the grating, the shape of the groove governs S(WG). As a result, it is possible to increase S(WG) to 1000 nm/RIU and figure of merit to 24 by tailoring the height and width of the groove. Finally, a simple analytical expression is derived to describe S(WG) and it agrees well with the numerical data. This easy-to-use expression not only reveals the origin of waveguide mode sensitivity, but also provides useful guidance for the theoretical design and experimental realization of high-sensitivity metallic-gratings-based biosensors.


Asunto(s)
Metales/química , Modelos Químicos , Nanopartículas/química , Refractometría/instrumentación , Refractometría/métodos , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas/ultraestructura
13.
Nano Lett ; 10(7): 2574-9, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20518545

RESUMEN

On the basis of conformal transformation, a general strategy is proposed to design plasmonic nanostructures capable of an efficient harvesting of light over a broadband spectrum. The surface plasmon modes propagate toward the singularity of these structures where the group velocity vanishes and energy accumulates. A considerable field enhancement and confinement is thus expected. Radiation losses are also investigated when the structure dimension becomes comparable to the wavelength.

14.
Opt Lett ; 35(23): 3988-90, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21124588

RESUMEN

We demonstrate thermally controlled plasmon resonance modulation of single gold nanoparticles on vanadium dioxide thin films by performing dark-field spectroscopy measurements at different temperatures. The plasmon resonance of the nanoparticles exhibits a significant blueshift in the visible range when the vanadium dioxide film undergoes its insulator-to-metal phase transition around 67 °C. More importantly, the resonance shift shows a clear hysteresis, mirroring the behavior of the vanadium dioxide film. At a fixed wavelength, the scattering intensity of Au particles also shows a hysteretic behavior decorated with an overshoot before (after) the insulator-metal (metal-insulator) phase transition of the vanadium dioxide film, suggesting that the nanoparticle is probing local variations in the phase transition.

15.
Phys Rev Lett ; 105(23): 233901, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231460

RESUMEN

The interaction between plasmonic nanoparticles is investigated by means of transformation optics. The optical response of a dimer can be decomposed as a sum of modes whose resonances redshift when the nanoparticles approach each other. The extinction and scattering cross sections as well as the field enhancement induced by the dimer are derived analytically taking into account radiation damping. Interestingly, some invisibility dips occur in the scattering spectrum and originate from a destructive interference between each surface plasmon mode.

16.
Talanta ; 182: 38-48, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29501167

RESUMEN

Surface functionalization is an effective strategy in the precise control of electronic surface states of two-dimensional materials for promoting their applications. In this study, based on the strong coordination interaction between the transition-metal centers and N atoms, the surface functionalization of few-layer MoS2 nanosheets was successfully prepared by liquid phase exfoliation method in N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone, and formamide. The cytotoxicity of surface-functionalized MoS2 nanosheets was for the first time evaluated by the methylthiazolyldiphenyl-tetrazoliumbromide assays. An electrochemical sensor was constructed based on glass carbon electrode (GCE) modified by MoS2 nanosheets obtained in DMF, which exhibits relatively higher sensitivity to Cd2+ detection and lower cytotoxicity against MCF-7 cells. The mechanisms of surface functionalization and selectively detecting Cd2+ were investigated by density functional theory calculations together with various spectroscopic measurements. It was found that surface-functionalized MoS2 nanosheets could be generated through Mo-N covalent bonds due to the orbital hybridization between the 5 s orbitals of Mo atoms and the 2p orbitals of N atoms of the solvent molecules. The high selectivity of the sensor is attributed to the coordination reaction between Cd2+ and O donor atoms of DMF adsorbed on MoS2 nanosheets. The robust anti-interference is ascribed to the strong binding energy of Cd2+ and O atoms of DMF. Under the optimum conditions, the electrochemical sensor exhibits highly sensitive and selective assaying of Cd2+ with a measured detection limit of 0.2 nM and a linear range from 2 nM to 20 µM.

17.
ACS Nano ; 12(10): 9913-9921, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30153416

RESUMEN

A precision photoreduction technology for the ultrafast high-precision light-controlled growth of silver nanoparticles for printing plasmonic color images is presented. Ultraviolet (UV) patterns with about a million pixels are generated to temporally and spatially regulate the photoreduction of silver salts to precisely create around a million clusters of distinct silver nanoparticles on a titanium dioxide (TiO2)-capped quartz substrate. The silver nanoparticle-TiO2-quartz structure exhibits a Fano-like reflection spectrum, whose spectral dip can be tuned by the dimension of the silver nanoparticles for plasmonic color generation. This technology allows the one-step production of multiscale engineered large-area plasmonic substrates without the use of either nanostructured templates or additional nanofabrication processes and thus offers an approach to plasmonic engineering for a myriad of applications ranging from structural color decoration to plasmonic microdevices and biosensors.

18.
ACS Nano ; 12(7): 6492-6503, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29924592

RESUMEN

Charge transport plays an important role in defining both far-field and near-field optical response of a plasmonic nanostructure with an ultrasmall built-in nanogap. As the gap size of a gold core-shell nanomatryoshka approaches the sub-nanometer length scale, charge transport may occur and strongly alter the near-field enhancement within the molecule-filled nanogap. In this work, we utilize ultrasensitive surface-enhanced Raman spectroscopy (SERS) to investigate the plasmonic near-field variation induced by the molecular junction conductance-assisted electron transport in gold nanomatryoshkas, termed gap-enhanced Raman tags (GERTs). The GERTs, with interior gaps from 0.7 to 2 nm, are prepared with a wet chemistry method. Our experimental and theoretical studies suggest that the electron transport through the molecular junction influences both far-field and near-field optical properties of the GERTs. In the far-field extinction response, the low-energy gap mode predicted by a classical electromagnetic model (CEM) is strongly quenched and hence unobservable in the experiment, which can be well explained by a quantum-corrected model (QCM). In the near-field SERS response, the optimal gap size for maximum Raman enhancement at the excitation wavelength of 785 nm (633 nm) is about 1.35 nm (1.8 nm). Similarly, these near-field results do not tally with the CEM calculations but agree well with the QCM results where the molecular junction conductance in the nanogap is fully considered. Our study may improve understanding of charge-transport phenomena in ultrasmall plasmonic molecular nanogaps and promote the further development of molecular electronics-based plasmonic nanodevices.

19.
Adv Mater ; 30(22): e1707237, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29665110

RESUMEN

"Fata Morgana" or "Mirage" phenomena have long been captivated as optical illusions, which actually relies on gradient-density air or vapor. Man-made optical illusions have witnessed significant progress by resorting to artificially structured metamaterials. Nevertheless, two long-standing challenges remain formidable: first, exotic parameters (negative or less than unity) become inevitable; second, the signature of original object is altered to that of a virtual counterpart. It is thus not able to address the holy grail of illusion per se, since a single virtual object still exposes the location. In this study, those problems are successfully addressed in a particular setup-illusion thermotics, which identically mimics the exterior thermal behavior of an equivalent reference and splits the interior original heat source into many virtual signatures. A general paradigm to design thermal illusion metadevices is proposed to manipulate thermal conduction, and empower robust simultaneous functions of moving, shaping, rotating, and splitting heat sources of arbitrary cross sections. The temperature profile inside the thermal metadevice can mislead the awareness of the real location, shape, size, and number of the actual heat sources. The present concept may trigger unprecedented development in other physical fields to realize multiple functionalized illusions in optics, electromagnetics, etc.

20.
Nanoscale ; 10(42): 19684-19691, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328878

RESUMEN

Chiral cysteine-directed assemblies of Au@Ag core-shell nanocrystals (CSNCs) and Au/Ag nanorods with end-to-end (ETE) and side-by-side (SBS) configurations are fabricated and used to explore the definitive factors affecting the chiral response. The interaction between cysteine and metallic nanoparticles leads to intense and widely tunable plasmonic circular dichroism (PCD) ranging from a near-infrared (NIR) to ultraviolet (UV) regime. More importantly, it was observed that, in Ag nanorod and CSNC samples with varied aspect ratios, the ETE assembled patterns exhibit much larger PCD enhancement than SBS assemblies in an l/d-cysteine solvent environment. Very surprisingly, such a giant PCD response in these assemblies is completely different from that of the Au nanorod assembly case as reported earlier. Experimental and theoretical studies reveal that the interplay between the local field enhancement and backaction, triggered by the geometric configuration differentia of covered achiral CTAB molecules on Ag and Au surfaces, plays a crucial role in chiral response variances and leads to geometry-dependent optical activities. This work not only sheds light on understanding the relationship between the configuration of plasmonic nanostructure assemblies and geometry-manipulated circular dichroism, but also paves the way for predictive design of plasmonic biosensors or other nanodevices with controllable optical activities from the UV to the NIR light range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA