Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102535

RESUMEN

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Ubiquitinación , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Estabilidad Proteica/efectos de la radiación , Luz , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/genética
2.
Circulation ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315433

RESUMEN

BACKGROUND: BMP9 (bone morphogenetic protein 9) is a member of the TGF-ß (transforming growth factor ß) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS: The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice. RESULTS: We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA reductase 1), a rate-limiting enzyme involved in ß-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice. CONCLUSIONS: These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart.

3.
FASEB J ; 38(18): e70058, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39320969

RESUMEN

Uric acid (UA) is the end product of purine metabolism. In recent years, UA has been found to be associated with the prognosis of clinical cancer patients. However, the intricate mechanisms by which UA affects the development and prognosis of tumor patients has not been well elucidated. In this study, we explored the role of UA in breast cancer, scrutinizing its impact on breast cancer cell function by treating two types of breast cancer cell lines with UA. The role of UA in the cell cycle and proliferation of tumors and the underlying mechanisms were further investigated. We found that the antioxidant effect of UA facilitated the scavenging of reactive oxygen species (ROS) in breast cancer, thereby reducing aryl hydrocarbon receptor (AhR) expression and affecting the breast cancer cell cycle, driving the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway. Moreover, in breast cancer patients, the expression of AhR and its downstream genes may be closely associated with cancer progression in patients. Therefore, an increase in UA could promote the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway axis.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Ciclina E , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Receptores de Hidrocarburo de Aril , Ácido Úrico , Animales , Femenino , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Ciclo Celular , Línea Celular Tumoral , Ciclina E/metabolismo , Ciclina E/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Ácido Úrico/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(44): e2211194119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36306325

RESUMEN

Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.


Asunto(s)
COVID-19 , Humanos , Intrones/genética , Estudios Retrospectivos , COVID-19/genética , Empalme del ARN/genética , Nucleótidos
5.
Gut ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39216984

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by its lethality and limited treatment options, including the utilisation of checkpoint blockade (ICB) immunotherapy. Epigenetic dysregulation is a defining feature of tumourigenesis that is implicated in immune surveillance, but remains elusive in PDAC. DESIGN: To identify the factors that modulate immune surveillance, we employed in vivo epigenetic-focused CRISPR-Cas9 screen in mouse PDAC tumour models engrafted in either immunocompetent or immunodeficient mice. RESULTS: Here, we identified MED12 as a top hit, emerging as a potent negative modulator of immune tumour microenviroment (TME) in PDAC. Loss of Med12 significantly promoted infiltration and cytotoxicity of immune cells including CD8+ T cells, natural killer (NK) and NK1.1+ T cells in tumours, thereby heightening the sensitivity of ICB treatment in a mouse model of PDAC. Mechanistically, MED12 stabilised heterochromatin protein HP1A to repress H3K9me3-marked endogenous retroelements. The derepression of retrotransposons induced by MED12 loss triggered cytosolic nucleic acid sensing and subsequent activation of type I interferon pathways, ultimately leading to robust inflamed TME . Moreover, we uncovered a negative correlation between MED12 expression and immune resposne pathways, retrotransposon levels as well as the prognosis of patients with PDAC undergoing ICB therapy. CONCLUSION: In summary, our findings underscore the pivotal role of MED12 in remodelling immnue TME through the epigenetic silencing of retrotransposons, offering a potential therapeutic target for enhancing tumour immunogenicity and overcoming immunotherapy resistance in PDAC.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39236286

RESUMEN

The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39102869

RESUMEN

Community-acquired pneumonia (CAP) is a significant global health concern, responsible for high mortality and morbidity. Recent research has revealed a potential link between disordered microbiome and metabolism in pneumonia, although the precise relationship between these factors and severe CAP remains unclear. To address this knowledge gap, we conducted a comprehensive analysis utilizing 16S sequencing and LC-MS/MS metabolomics data to characterize the microbial profile in sputum and metabolic profile in serum in patients with severe community-acquired pneumonia (sCAP). Our analysis identified 13 genera through LEfSe analysis and 15 metabolites meeting specific criteria (P < 0.05, VIP ≥ 2, and |Log2(FC)| ≥ 2). The findings of this study demonstrate the presence of altered coordination between the microbiome of the lower respiratory tract and host metabolism in patients with sCAP. The observed concentration trends of specific metabolites across different disease stages further support the potential involvement of the serum metabolism in the development of sCAP. These correlations between the airway microbiome and host metabolism in sCAP patients have important implications for optimizing early diagnosis and developing individualized therapeutic strategies.

8.
BMC Genomics ; 25(1): 969, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39415084

RESUMEN

BACKGROUND: Decidualization is a critical step in establishing pregnancy in mammals. Successful decidualization depends on intricate gland-stromal crosstalk. Clusterin (Clu) is a ubiquitously secreted protein in physiological fluids that is involved in numerous physiological functions. However, the role of Clu in decidualization is not fully understood. RESULTS: In this study, we examined the expression pattern of Clu during early pregnancy in mice and explored its potential function in decidualization. Our results revealed that Clu was expressed in the uterine glands on Days 1-2 of early pregnancy and on Days 5-8 during decidualization after embryo implantation, as well as in glands at the interimplantation site. Additionally, ovariectomized mice exhibited significant upregulation of Clu expression in the uterine glands 3 h after in vivo estrogen injection. Trem2, a receptor for Clu, was detected in the decidual region of mice on Days 5-8 of early pregnancy, where it mediates Clu to regulate the decidual region. Furthermore, we observed that recombinant CLU protein increased the expression of the decidualization marker molecules insulin-like growth factor binding protein 1 (IGFBP1) and prolactin (PRL) in decidual cells. However, this upregulation was not observed when Trem2 expression was inhibited with siRNA. CONCLUSIONS: Uterine gland-derived Clu, a new paracrine modulator, may participate in early pregnancy by influencing the decidualization process mediated by Trem2 in mice.


Asunto(s)
Clusterina , Decidua , Endometrio , Glicoproteínas de Membrana , Receptores Inmunológicos , Animales , Femenino , Clusterina/metabolismo , Clusterina/genética , Ratones , Embarazo , Decidua/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Endometrio/metabolismo , Implantación del Embrión , Prolactina/metabolismo
9.
Cancer Sci ; 115(3): 836-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38273817

RESUMEN

Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Podosomas , Humanos , Cortactina/genética , Cortactina/metabolismo , Carcinoma Nasofaríngeo/genética , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Nasofaríngeas/genética , Invasividad Neoplásica
10.
J Clin Immunol ; 44(8): 176, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133333

RESUMEN

PURPOSE: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS: In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS: Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION: The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.


Asunto(s)
Autoanticuerpos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Nocardiosis , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Nocardiosis/inmunología , Nocardiosis/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Proteinosis Alveolar Pulmonar/inmunología , Proteinosis Alveolar Pulmonar/diagnóstico , Cryptococcus gattii/inmunología
11.
J Clin Immunol ; 44(8): 184, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177867

RESUMEN

PURPOSE: Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS: We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS: We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION: Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.


Asunto(s)
Candidiasis Mucocutánea Crónica , Mutación con Ganancia de Función , Inmunofenotipificación , Pirazoles , Factor de Transcripción STAT1 , Humanos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Candidiasis Mucocutánea Crónica/genética , Candidiasis Mucocutánea Crónica/diagnóstico , Candidiasis Mucocutánea Crónica/terapia , Masculino , Femenino , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Azetidinas/uso terapéutico , Purinas/uso terapéutico , Niño , Adolescente , Taiwán , Adulto
12.
Small ; 20(5): e2304518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752744

RESUMEN

Designing reliable and energy-efficient memristors for artificial synaptic arrays in neuromorphic computing beyond von Neumann architecture remains a challenge. Here, memristors based on emerging layered nickel phosphorus trisulfide (NiPS3 ) are reported that exhibit several favorable characteristics, including uniform bipolar nonvolatile switching with small operating voltage (<1 V), fast switching speed (< 20 ns), high On/Off ratio (>102 ), and the ability to achieve programmable multilevel resistance states. Through direct experimental evidence using transmission electron microscopy and energy dispersive X-ray spectroscopy, it is revealed that the resistive switching mechanism in the Ti/NiPS3 /Au device is related to the formation and dissolution of Ti conductive filaments. Intriguingly, further investigation into the microstructural and chemical properties of NiPS3 suggests that the penetration of Ti ions is accompanied by the drift of phosphorus-sulfur ions, leading to induced P/S vacancies that facilitate the formation of conductive filaments. Furthermore, it is demonstrated that the memristor, when operating in quasi-reset mode, effectively emulates long-term synaptic weight plasticity. By utilizing a crossbar array, multipattern memorization and multiply-and-accumulate (MAC) operations are successfully implemented. Moreover, owing to the highly linear and symmetric multiple conductance states, a high pattern recognition accuracy of ≈96.4% is demonstrated in artificial neural network simulation for neuromorphic systems.

13.
Small ; 20(33): e2311649, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552254

RESUMEN

X-ray detection and imaging are widely used in medical diagnosis, product inspection, security monitoring, etc. Large-scale polycrystalline perovskite thick films possess high potential for direct X-ray imaging. However, the notorious problems of baseline drift and high detection limit caused by ions migration are still remained. Here, ion migration is reduced by incorporating 2D perovskite into 3D perovskite, thereby increasing the ion activation energy. This approach hinders ion migration within the perovskite film, consequently suppressing baseline drift and reducing the lowest detection limit(LOD) of the device. As a result, the baseline drifting declines by 20 times and the LOD reduces to 21.1 nGy s-1, while the device maintains a satisfactory sensitivity of 5.6 × 103 µC Gy-1 cm-2. This work provides a new strategy to achieve low ion migration in large-scale X-ray detectors and may provide new thoughts for the application of mixed-dimension perovskite.

14.
FASEB J ; 37(7): e23012, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272854

RESUMEN

As an end product of purine metabolism, uric acid (UA) is a major endogenous antioxidant in humans. However, impaired UA synthesis and excretion can lead to hyperuricemia (HUA), which may in turn induce endothelial dysfunction (ED) and contribute to the pathogenesis of cardiovascular diseases (CVDs; e.g., atherosclerosis and hypertension). In this review, we discuss recent advances and novel insights into the effects exerted by HUA conditions in ED and related underlying mechanisms focusing on impaired UA metabolism, reduction in the synthesis and bioavailability of nitric oxide, endothelial cell injury, the endothelial-to-mesenchymal transition, insulin resistance, procoagulant activity, and acquisition of an inflammatory phenotype. We additionally discuss intervention strategies for HUA-induced ED and the paradoxical roles of UA in endothelial function. We summarize major conclusions and perspectives: the deleterious effects of HUA contribute to the initiation and progression of CVD-related ED. However, the treatment strategies (in addition to urate-lowering therapy) for increasing endothelial function are limited because the majority of literature on pharmacological and pathophysiological mechanisms underlying HUA-induced ED solely describes in vitro models. Therefore, a better understanding of the mechanisms involved in HUA-induced ED is critical to the development of novel therapies for preventing and treating CVD-HUA comorbidities.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Hiperuricemia , Humanos , Hiperuricemia/metabolismo , Enfermedades Cardiovasculares/etiología , Antioxidantes/uso terapéutico , Ácido Úrico/metabolismo , Hipertensión/metabolismo
15.
Scand J Gastroenterol ; 59(8): 906-917, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38745449

RESUMEN

OBJECTIVES: The gut-liver axis disruption is a unified pathogenetic principle of cholestatic liver disease (CSLD). Increased gut permeability is the leading cause of gut-liver axis disruption. HO-1 is capable of protecting against gut-liver axis injury. However, it has rarely been reported whether autophagy is involved in HO-1 protecting gut-liver barrier integrity and the underlying mechanism. MATERIALS AND METHODS: Mice underwent bile duct ligation (BDL) was established as CSLD model in vivo. Caco-2 cells with LPS treatment was established as in vitro cell model. Immunofluorescence, western blot and transepithelial electrical resistance (TER) assay were used to observe epithelial tight junction (TJ) and autophagy. Liver injury and fibrosis were evaluated as well through H&E staining, masson staining, sirius red staining and ELISA. RESULTS AND CONCLUSIONS: Our study demonstrated that the epithelial TJ and TER were notably reduced both in BDL mice and in LPS treated intestinal epithelial cells. Increased HO-1 expression could significantly induce intestinal epithelial cell autophagy. Additionally, this increased autophagy level reversed the reduction effects of BDL or LPS on epithelial TJ and TER in vivo and in vitro, therefore decreased transaminase level in serum and relieved liver fibrosis in BDL mice. Besides, increased autophagy level in turn upregulated the expression of HO-1 by p62 degradation of Keap1 and subsequent activation of Nrf2 pathway. Collectively, these results indicate that HO-1 reduces gut permeability by enhancing autophagy level in CSLD, the increased autophagy establishes a HO-1-p62-Nrf2 positive feedback loop to further improve gut-liver axis disruption. Therefore, our study confirms the critical role of autophagy in HO-1 ameliorating gut-liver axis injury during CSLD, highlighting HO-1 as a promising therapeutic target.


Asunto(s)
Autofagia , Colestasis , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Permeabilidad , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Humanos , Hemo-Oxigenasa 1/metabolismo , Células CACO-2 , Colestasis/metabolismo , Colestasis/patología , Masculino , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hígado/metabolismo , Hígado/patología , Uniones Estrechas/metabolismo , Conductos Biliares/cirugía , Lipopolisacáridos , Transducción de Señal , Proteínas de la Membrana
16.
BMC Infect Dis ; 24(1): 326, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500041

RESUMEN

BACKGROUND: Currently, culture methods are commonly used in clinical tests to detect pathogenic fungi including Candida spp. Nonetheless, these methods are cumbersome and time-consuming, thereby leading to considerable difficulties in diagnosis of pathogenic fungal infections, especially in situations that respiratory samples such as alveolar lavage fluid and pleural fluid contain extremely small amounts of microorganisms. The aim of this study was to elucidate the utility and practicality of microfluidic chip technology in quick detection of respiratory pathogenic fungi. METHODS: DNAs of clinical samples (mainly derived from sputa, alveolar lavage fluid, and pleural fluid) from 64 coastal patients were quickly detected using microfluidic chip technology with 20 species of fungal spectrum and then validated by Real-time qPCR, and their clinical baseline data were analyzed. RESULTS: Microfluidic chip results showed that 36 cases infected with Candida spp. and 27 cases tested negative for fungi, which was consistent with Real-time qPCR validation. In contrast, only 16 cases of fungal infections were detected by the culture method; however, one of the culture-positive samples tested negative by microfluidic chip and qPCR validation. Moreover, we found that the patients with Candida infections had significantly higher rates of platelet count reduction than fungi-negative controls. When compared with the patients infected with C. albicans alone, the proportion of males in the patients co-infected with multiple Candidas significantly increased, while their platelet counts significantly decreased. CONCLUSIONS: These findings suggest that constant temperature amplification-based microfluidic chip technology combined with routine blood tests can increase the detection speed and accuracy (including sensitivity and specificity) of identifying respiratory pathogenic fungi.


Asunto(s)
Micosis , Infecciones del Sistema Respiratorio , Masculino , Humanos , Microfluídica , Hongos/genética , Micosis/diagnóstico , Candida/genética , Candida albicans , Sensibilidad y Especificidad , Infecciones del Sistema Respiratorio/diagnóstico
17.
BMC Med Imaging ; 24(1): 202, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103756

RESUMEN

BACKGROUND: Community-Acquired Pneumonia (CAP) remains a significant global health concern, with a subset of cases progressing to Severe Community-Acquired Pneumonia (SCAP). This study aims to develop and validate a CT-based radiomics model for the early detection of SCAP to enable timely intervention and improve patient outcomes. METHODS: A retrospective study was conducted on 115 CAP and SCAP patients at Southern Medical University Shunde Hospital from January to December 2021. Using the Pyradiomics package, 107 radiomic features were extracted from CT scans, refined via intra-class and inter-class correlation coefficients, and narrowed down using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The predictive performance of the radiomics-based model was assessed through receiver operating characteristic (ROC) analysis, employing machine learning classifiers such as k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), trained and validated on datasets split 7:3, with a training set (n = 80) and a validation set (n = 35). RESULTS: The radiomics model exhibited robust predictive performance, with the RF classifier achieving superior precision and accuracy compared to LR, SVM, and KNN classifiers. Specifically, the RF classifier demonstrated a precision of 0.977 (training set) and 0.833 (validation set), as well as an accuracy of 0.925 (training set) and 0.857 (validation set), suggesting its superior performance in both metrics. Decision Curve Analysis (DCA) was utilized to evaluate the clinical efficacy of the RF classifier, demonstrating a favorable net benefit within the threshold ranges of 0.1 to 0.8 for the training set and 0.2 to 0.7 for the validation set. CONCLUSIONS: The radiomics model developed in this study shows promise for early SCAP detection and can improve clinical decision-making.


Asunto(s)
Infecciones Comunitarias Adquiridas , Diagnóstico Precoz , Neumonía , Tomografía Computarizada por Rayos X , Humanos , Infecciones Comunitarias Adquiridas/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Femenino , Masculino , Neumonía/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Aprendizaje Automático , Curva ROC , Máquina de Vectores de Soporte , Índice de Severidad de la Enfermedad , Radiómica
18.
Int J Qual Health Care ; 36(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38156423

RESUMEN

China's population is ageing, affecting trends in social development and basic national conditions. More attention must be paid to the lack of care needs assessments for the elderly in China's pension institutions. This paper discusses a systematic evaluation of the care needs of the elderly in China's elderly care institutions. Literature was collected and synthesized after a search of the Web of Science, PubMed, and other databases for works published up to August 2021. Relevant content is proposed, including the name of the first author, publication date, study area, and sample size. Exactly 18 articles were included in the literature, documents that reported on a total of 7277 elderly people. The results showed a combined demand rate of primary care needs ≥50%. The top five needs included mental/psychological (76%), tranquillity/care (73%), living/environmental (71%), medical treatment (64%), and preventive healthcare (64%). The combined demand rate of secondary care needs was ≥50%. The top five needs included 79% for room/laundry/cleaning, 77% for psychological comfort and nursing, 73% for end-of-life care, 70% for disease diagnosis and treatment, and 69% for physical examination. The health needs of older people are diverse and focus mainly on mental/psychological, tranquility/care, living/environmental (71%), pharmacotherapy, and preventive healthcare.


Asunto(s)
Atención a la Salud , Cuidado Terminal , Humanos , Anciano , Envejecimiento , Evaluación de Necesidades , China
19.
Ecotoxicol Environ Saf ; 277: 116325, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653019

RESUMEN

The water accommodated fraction (WAF) of crude oil exerts considerable impacts on marine fish during embryonic stage. Clarifying changes in epigenetic modifications is helpful for understanding the molecular mechanism underlying the toxicity of embryonic WAF exposure. The aim of this study was to explore genome-wide DNA methylation changes in Oryzias melastigma embryos after exposure to the nominal total petroleum hydrocarbon concentration of 500 µg/L in WAF for 7 days. Whole-genome bisulfite sequencing revealed that 8.47 % and 8.46 % of all the genomic C sites were methylated in the control and WAF-exposed groups, respectively. Among the three sequence contexts, methylated CG site had the largest number in both the two groups. The sequence preferences of nearby methylated cytosines were consistent between the two groups. A total of 4798 differentially methylated regions (DMRs) were identified in the promoter region. Furthermore, Gene Ontology analysis revealed that DMR-related genes were enriched mainly for functions related to development and nervous system. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathways enriched in DMR-related genes were related to nervous system and endocrine system. These novel findings provide comprehensive insights into the genome-wide DNA methylation landscape of O. melastigma following embryonic WAF exposure, shedding light on the epigenetic regulatory mechanisms underlying WAF-induced toxicity.


Asunto(s)
Metilación de ADN , Embrión no Mamífero , Petróleo , Contaminantes Químicos del Agua , Metilación de ADN/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Petróleo/toxicidad , Embrión no Mamífero/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos
20.
Ecotoxicol Environ Saf ; 269: 115781, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056122

RESUMEN

Pyroptosis plays a critical role in the pathogenesis of mental disorders. However, its specific role and mechanism in arsenic (As)-induced generalized anxiety disorder (GAD) remain elusive. We utilized the data from CtdBbase, Phenopedia and DisGeNet to analyze genes that interact with arsenic poisoning and GAD. Subsequently KEGG and GO enrichment analysis were conducted to preliminatively predict the mechanism of inorganic arsenic-induced GAD. Male Wistar rats were administered water containing NaAsO2 (50, 100 µg/L) to evaluate GAD-like behavior through open field test and elevated plus maze. The expression of differential miRNAs including miR-425-3p, and pyroptosis in the prefrontal cortex of rats were detected. Furthermore, SKNSH cells were stimulated with NaAsO2 to examine the molecular changes, and then miR-425-3p mimic was transfected into SKNSH cells to detect pyroptosis in order to verify the function of miR-425-3p. Inorganic arsenic was confirmed to induce GAD-like behavior in rats, characterized by decreased locomotor activity and exploratory activities. Rats with inorganic arsenic-induced GAD exhibited reduced miR-425-3p expression levels in the prefrontal cortex and increased expression of pyroptosis-related proteins, including NF-κB, NLRP3, Caspase-1, GSDMD, IL-1ß, and IL-18. Treating with different concentrations of NaAsO2 showed that inorganic arsenic exposure downregulates miR-425-3p expression in SKNSH cells and upregulates the expression levels of pyroptosis-related proteins. Dual-luciferase reporter gene experiments demonstrated that miR-425-3p targets the NFKB1. Overexpressing miR-425-3p reversed the inorganic arsenic-induced pyroptosis in SKNSH cells by inhibiting the expression of NF-κB, NLRP3, Caspase-1, GSDMD, IL-1ß, and IL-18. Our findings suggest that inorganic arsenic exposure may induce GAD-like behavior in rats by downregulating miR-425-3p in prefrontal cortex, which targets NF-κB and regulates pyroptosis in neuronal cells.


Asunto(s)
Trastornos de Ansiedad , Arsénico , MicroARNs , Piroptosis , Animales , Humanos , Masculino , Ratas , Trastornos de Ansiedad/inducido químicamente , Arsénico/efectos adversos , Arsénico/toxicidad , Caspasa 1/metabolismo , Interleucina-18/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/genética , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA