Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 285(49): 38568-79, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20876532

RESUMEN

Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo(2)-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 10(9) molecules per cell in 24 h, based on the sum of subspecies analyzed by "lipidomic" mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-(13)C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.


Asunto(s)
Autofagia/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Esfingolípidos/biosíntesis , Receptor Toll-Like 4/agonistas , Animales , Autofagia/genética , Autofagia/inmunología , Células CHO , División Celular/efectos de los fármacos , División Celular/genética , División Celular/inmunología , Línea Celular , Cricetinae , Cricetulus , Aparato de Golgi/genética , Aparato de Golgi/inmunología , Aparato de Golgi/metabolismo , Inmunidad Innata/inmunología , Lipopolisacáridos/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Mutación , Fagosomas/inmunología , Fagosomas/metabolismo , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/inmunología , Serina C-Palmitoiltransferasa/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Esfingolípidos/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
2.
Proc Natl Acad Sci U S A ; 105(41): 15720-5, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18840690

RESUMEN

Cyclic GMP (cGMP) is an important second messenger in eukaryotes. It is formed by guanylyl cyclases (GCs), members of the nucleotidyl cyclases class III, which also comprises adenylyl cyclases (ACs) from most organisms. To date, no structures of eukaryotic GCs are available, and all bacterial class III proteins were found to be ACs. Here we describe the biochemical and structural characterization of the class III cyclase Cya2 from cyanobacterium Synechocystis PCC6803. Cya2 shows high specificity for GTP versus ATP, revealing it to be the first bacterial GC, and sequence similarity searches indicate that GCs are also present in other bacteria. The crystal structure of Cya2 provides first structural insights into the universal GC family. Structure and mutagenesis studies show that a conserved glutamate, assisted by an interacting lysine, dominates substrate selection by forming hydrogen bonds to the substrate base. We find, however, that a second residue involved in substrate selection has an unexpected sterical role in GCs, different from its hydrogen bonding function in the related ACs. The structure identifies a tyrosine that lines the guanine binding pocket as additional residue contributing to substrate specificity. Furthermore, we find that substrate specificity stems from faster turnover of GTP, rather than different affinities for GTP and ATP, implying that the specificity-determining interactions are established after the binding step.


Asunto(s)
Proteínas Bacterianas/química , Guanilato Ciclasa/química , Especificidad por Sustrato , Synechocystis/química , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cianobacterias , Ácido Glutámico , Guanosina Trifosfato/metabolismo , Enlace de Hidrógeno , Unión Proteica
3.
Biochim Biophys Acta ; 1791(8): 746-56, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19362163

RESUMEN

Serine palmitoyltransferase (SPT) has been localized to the endoplasmic reticulum (ER) by subcellular fractionation and enzymatic assays, and fluorescence microscopy of epitope-tagged SPT; however, our studies have suggested that SPT subunit 1 might be present also in focal adhesions and the nucleus. These additional locations have been confirmed by confocal microscopy using HEK293 and HeLa cells, and for focal adhesions by the demonstration that SPT1 co-immunoprecipitates with vinculin, a focal adhesion marker protein. The focal adhesion localization of SPT1 is associated with cell morphology, and possibly cell migration, because it is seen in most cells before they reach confluence but disappears when they become confluent, and is restored by a standard scratch-wound healing assay. Conversely, elimination of SPT1 using SPTLC1 siRNA causes cell rounding. Thus, in addition to its "traditional" localization in the ER for de novo sphingolipid biosynthesis, SPT1 is present in other cellular compartments, including focal adhesions where it is associated with cell morphology.


Asunto(s)
Núcleo Celular/enzimología , Forma de la Célula , Retículo Endoplásmico/enzimología , Adhesiones Focales/enzimología , Subunidades de Proteína/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Adhesión Celular , Línea Celular , Membrana Celular/enzimología , Silenciador del Gen , Humanos , Inmunoprecipitación , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Esfingolípidos/metabolismo , Fracciones Subcelulares/enzimología , Vinculina/metabolismo
4.
FEBS Lett ; 553(3): 365-9, 2003 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-14572652

RESUMEN

In plants, glucosylceramide (GlcCer) biosynthesis is poorly understood. Previous investigations suggested that sterol glucoside (SG) acts as the actual glucose donor for the plant GlcCer synthase (GCS). We addressed this question by generating a Pichia pastoris double mutant devoid of GlcCer and SG. This mutant was used for heterologous expression of the plant GCS. The activity of the GCS resulted in the accumulation of GlcCer and, surprisingly, a small proportion of SG. The synthesis of GlcCer in the transformed double mutant shows that the GCS is SG-independent, while the detection of SG suggests that in addition to the sterol glucosyltransferase, also the GCS may contribute in planta to SG biosynthesis.


Asunto(s)
Glucósidos/biosíntesis , Glucosilceramidas/biosíntesis , Glucosiltransferasas/metabolismo , Gossypium/metabolismo , Pichia/metabolismo , Esteroles/biosíntesis , Uridina Difosfato Glucosa/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucósidos/química , Glucosilceramidas/química , Glucosiltransferasas/genética , Gossypium/enzimología , Gossypium/genética , Hidrólisis , Mutación/genética , Pichia/citología , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esteroles/química
5.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 467-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699740

RESUMEN

The second messenger cAMP is synthesized in mammals by ten differently regulated adenylyl cyclases (AC1-10). These ACs are grouped into nucleotidyl cyclase class III based on homologies in their catalytic domains. The catalytic domain of AC10 is unique, however, in being activated through direct interaction with calcium and bicarbonate. Here, the production, crystallization and X-ray diffraction analysis of the catalytic domain of human AC10 are described as a basis for structural studies of regulator binding sites and mechanisms. The recombinant protein had high specific AC activity, and crystals of AC10 in space group P63 diffracted to ∼2.0 Šresolution on a synchrotron beamline. A complete diffraction data set revealed unit-cell parameters a = b = 99.65, c = 98.04 Å, indicating one AC10 catalytic domain per asymmetric unit, and confirmed that the obtained crystals are suitable for structure solution and mechanistic studies.


Asunto(s)
Adenilil Ciclasas/química , Adenilil Ciclasas/aislamiento & purificación , Cristalografía por Rayos X/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalización , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biosci Rep ; 32(5): 491-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22775536

RESUMEN

The second messengers cAMP and cGMP mediate a multitude of physiological processes. In mammals, these cyclic nucleotides are formed by related Class III nucleotidyl cyclases, and both ACs (adenylate cyclases) and GCs (guanylate cyclases) comprise transmembrane receptors as well as soluble isoforms. Whereas sGC (soluble GC) has a well-characterized regulatory HD (haem domain) that acts as a receptor for the activator NO (nitric oxide), very little is known about the regulatory domains of the ubiquitous signalling enzyme sAC (soluble AC). In the present study, we identify a unique type of HD as a regulatory domain in sAC. The sAC-HD (sAC haem domain) forms a larger oligomer and binds, non-covalently, one haem cofactor per monomer. Spectral analyses and mutagenesis reveal a 6-fold co-ordinated haem iron atom, probably with non-typical axial ligands, which can bind both NO and CO (carbon monoxide). Splice variants of sAC comprising this domain are expressed in testis and skeletal muscle, and the HD displays an activating effect on the sAC catalytic core. Our results reveal a novel mechanism for regulation of cAMP signalling and suggest a need for reanalysis of previous studies on mechanisms of haem ligand effects on cyclic nucleotide signalling, particularly in testis and skeletal muscle.


Asunto(s)
Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Hemo/metabolismo , Adenilil Ciclasas/genética , Animales , Sitios de Unión , Monóxido de Carbono/metabolismo , Dominio Catalítico , AMP Cíclico/metabolismo , Humanos , Hierro/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Estructura Terciaria de Proteína , Testículo/metabolismo
7.
Aging (Albany NY) ; 1(2): 254-65, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-20157513

RESUMEN

Damage caused by reactive oxygen species (ROS) contributes to many aging processes and accompanying diseases. ROS are toxic side products of cellular respiration, but also function as signal, e.g. in the mitochondrial apoptosis pathway. The protein p66Shc, which has been implicated in life-span regulation and aging-related diseases, is a central player in stress-induced apoptosis and the associated ROS burst. Stress signals, such as UV radiation or ROS themselves, activate p66Shc, which was proposed to stimulate its H(2)O(2) forming activity, ultimately triggering mitochondrial disintegration. However, mechanistic details of H(2)O(2) formation and apoptosis induction by p66Shc and regulation of these activities remain to be revealed. Here, we describe the effects of Ser36 phosphorylation and Pin1 binding on p66Shc activity, and the identification of Peroxiredoxin 1 (Prx1) as a novel interaction partner for the unique p66Shc N-terminal domain. Prx1 was identified in affinity experiments as dominant interaction partner. Complex formation leads to disassembly of Prx1 decamers, which is known to increase its peroxidase activity. The interaction leads to reduction of the p66CH2CB tetramer, which reduces its ability to induce mitochondrial rupture. Our results indicate that p66CH2CB and Prx1 form a stress-sensing complex that keeps p66Shc inactive at moderate stress levels.


Asunto(s)
Peroxirredoxinas/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Clonación Molecular , Regulación de la Expresión Génica , Humanos , Ratones , Mitocondrias Hepáticas/metabolismo , Peroxirredoxinas/genética , Unión Proteica , Ratas , Especies Reactivas de Oxígeno , Proteínas Adaptadoras de la Señalización Shc/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src
8.
Lipids ; 44(8): 725-32, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19536577

RESUMEN

CHO-LY-B cells have been useful in studies of sphingolipid metabolism and function because they lack serine palmitoyltransferase (SPT) activity. Cloning and sequencing of the SPT1 transcript of LY-B cells identified the mutation as a guanine to adenine change at nucleotide 738, causing a G246R transformation. Western blots revealed low expression of the mutant SPT1 peptide, but activity was not detectable by mass spectrometric analysis of [(13)C]-palmitate incorporation into sphinganine, sphingosine, 1-deoxysphinganine, or 1-desoxymethylsphinganine. Treatment of LY-B cells with chemical chaperones (DMSO or glycerol) increased the amounts of mutant SPT1 as well as SPT2, but SPT activity was not restored. This study has established that G246R mutation in hamster SPT1 results in the loss of SPT activity.


Asunto(s)
Línea Celular , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/genética , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Modelos Moleculares , Proteínas Mutantes/análisis , Proteínas Mutantes/química , Proteínas Mutantes/genética , Estabilidad Proteica , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Serina C-Palmitoiltransferasa/análisis
9.
Glycobiology ; 15(9): 874-86, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15843594

RESUMEN

The glycosyltransferase family 21 (GT21) includes both enzymes of eukaryotic and prokaryotic organisms. Many of the eukaryotic enzymes from animal, plant, and fungal origin have been characterized as uridine diphosphoglucose (UDP-Glc):ceramide glucosyltransferases (glucosylceramide synthases [Gcs], EC 2.4.1.80). As the acceptor molecule ceramide is not present in most bacteria, the enzymatic specificities and functions of the corresponding bacterial glycosyltransferases remain elusive. In this study, we investigated the homologous and heterologous expression of GT21 enzymes from Agrobacterium tumefaciens and Mesorhizobium loti in A. tumefaciens, Escherichia coli, and the yeast Pichia pastoris. Glycolipid analyses of the transgenic organisms revealed that the bacterial glycosyltransferases are involved in the synthesis of mono-, di- and even tri-glycosylated glycolipids. As products resulting from their activity, we identified 1,2-diacyl-3-(O-beta-D-galacto-pyranosyl)-sn-glycerol, 1,2-diacyl-3-(O-beta-D-gluco-pyranosyl)-sn-glycerol as well as higher glycosylated lipids such as 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-gluco-pyranosyl]-sn-glycerol, and the deviatingly linked diglycosyldiacylglycerol 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->3)-O-beta-D-galacto-pyranosyl]-sn-glycerol. From a mixture of triglycosyldiacylglycerols, 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol could be separated in a pure form. In vitro enzyme assays showed that the glycosyltransferase from A. tumefaciens favours uridine diphosphogalactose (UDP-Gal) over UDP-Glc. In conclusion, the bacterial GT21 enzymes differ from the eukaryotic ceramide glucosyltransferases by the successive transfer of up to three galactosyl and glucosyl moieties to diacylglycerol.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Glucolípidos/metabolismo , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Glucosiltransferasas/genética , Glucolípidos/genética , Datos de Secuencia Molecular , Pichia/enzimología , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato/fisiología
10.
J Biol Chem ; 279(6): 3900-5, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14604982

RESUMEN

Growth of the yeast species Candida albicans and Pichia pastoris is inhibited by RsAFP2, a plant defensin isolated from radish seed (Raphanus sativus), at micromolar concentrations. In contrast, gcs-deletion mutants of both yeast species are resistant toward RsAFP2. GCS genes encode UDP-glucose:ceramide glucosyltransferases, which catalyze the final step in the biosynthesis of the membrane lipid glucosylceramide. In an enzyme-linked immunosorbent assay-based binding assay, RsAFP2 was found to interact with glucosylceramides isolated from P. pastoris but not with soybean nor human glucosylceramides. Furthermore, the P. pastoris parental strain is sensitive toward RsAFP2-induced membrane permeabilization, whereas the corresponding gcs-deletion mutant is highly resistant to RsAFP2-mediated membrane permeabilization. A model for the mode of action of RsAFP2 is presented in which all of these findings are linked. Similarly to RsAFP2, heliomicin, a defensin-like peptide from the insect Heliothis virescens, is active on C. albicans and P. pastoris parental strains but displays no activity on the gcs-deletion mutants of both yeast species. Furthermore, heliomicin interacts with glucosylceramides isolated from P. pastoris and soybean but not with human glucosylceramides. These data indicate that structurally homologous anti-fungal peptides present in species from different eukaryotic kingdoms interact with the same target in the fungal plasma membrane, namely glucosylceramides, and as such support the hypothesis that defensins from plants and insects have evolved from a single precursor.


Asunto(s)
Defensinas/metabolismo , Hongos/metabolismo , Glucosilceramidas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Plantas/metabolismo , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Defensinas/farmacología , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Genes Fúngicos , Glucosilceramidas/química , Glucosilceramidas/genética , Técnicas In Vitro , Proteínas de Insectos/farmacología , Mutación , Pichia/efectos de los fármacos , Pichia/genética , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Proteínas de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA