Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626762

RESUMEN

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Asunto(s)
Mosaicismo , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cerebelo/metabolismo , Cerebelo/patología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Ataxina-1/genética
2.
Mov Disord ; 39(5): 825-835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38486423

RESUMEN

BACKGROUND: International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. OBJECTIVES: To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine-learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. MATERIALS: Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2-year follow-up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 ("Clin1"); (2) MRI visual reading blinded to the clinical diagnosis ("MRI"); (3) both MRI visual reading and clinical criteria at V1 ("MRI and Clin1"), and (4) a machine-learning algorithm ("Algorithm"). The gold standard diagnosis was established by expert consensus after a 2-year follow-up. RESULTS: We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit ("Clin1": balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% ("MRI": 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit ("MRI and Clin1": 85.4%; P < 0.0001). The algorithm achieved a diagnostic gain of 9.9% ("Algorithm": 76.1%; P = 0.08). CONCLUSION: Our study shows the use of MRI analysis, whether by visual reading or machine-learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Diagnóstico Precoz , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Anciano , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/diagnóstico , Aprendizaje Automático , Incertidumbre , Diagnóstico Diferencial , Sensibilidad y Especificidad
3.
Radiology ; 306(3): e220430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36318030

RESUMEN

Background The time course of cellular damage after acute ischemic stroke (IS) is currently not well known, and specific noninvasive markers of microstructural alterations linked to inflammation are lacking, which hinders the monitoring of anti-inflammatory treatment. Purpose To evaluate the temporal pattern of neuronal and glial microstructural changes after stroke using in vivo single-voxel diffusion-weighted MR spectroscopy. Materials and Methods In this prospective longitudinal study, participants with IS and healthy volunteers (HVs) underwent MRI at 3.0 T. In participants with IS, apparent diffusion coefficients (ADCs) and concentrations of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in volumes of interest (VOIs), including the lesion VOI (VOIles) and the contralateral VOI (VOIcl) at 2 weeks, 1 month, and 3 months after IS. HVs were examined once, with VOIs located in the same brain regions as participants with IS. Within- and between-group differences and longitudinal changes were examined using linear mixed-effects models. Results Twenty participants with IS (mean age, 61 years ± 13 [SD]; 12 women) and 20 HVs (mean age, 59 years ± 13; 12 women) were evaluated. No differences in ADCs or concentrations were observed in VOIcl between HVs and participants with IS. In participants with IS, the ADC of tCr was higher in VOIles than in VOIcl at 1 month (+14.4%, P = .004) and 3 months after IS (+19.0%, P < .001), while the ADC of tCho was higher only at 1 month (+16.7%, P = .001). No difference in the ADC of tNAA was observed between the two VOIs at any time point. tNAA and tCr concentrations were lower in VOIles than in VOIcl and were stable over time (approximately -50% and -30%, respectively; P < .001). Conclusion High diffusivity of choline-containing compounds and total creatine (tCr) in the ischemic lesion 1 month after ischemic stroke (IS) indicates glial morphologic changes, suggesting that active inflammation is still ongoing at this time point. High tCr diffusivity up to 3 months after IS likely reflects the presence of astrogliosis at the chronic stage of cerebral ischemia. Clinical trial registration no. NCT02833961 © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Humanos , Femenino , Persona de Mediana Edad , Creatina , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Estudios Longitudinales , Estudios Prospectivos , Espectroscopía de Resonancia Magnética/métodos , Isquemia Encefálica/diagnóstico por imagen , Colina , Receptores de Antígenos de Linfocitos T
4.
Mov Disord ; 38(7): 1294-1306, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37288993

RESUMEN

BACKGROUND: Carriers of small cytosine-adenine-guanine (CAG) repeats below 39 in the HTT gene are traditionally associated with milder Huntington's disease, but their clinical profile has not been extensively studied. OBJECTIVE: To study the phenotype of CAG36-38 repeat carriers. METHODS: We included 35 patients and premanifest carriers of CAG36-38 repeats. We compared clinical and neuropsychological profiles of 11 CAG36-38 patients with 11 matched CAG40-42 patients. In addition, we analyzed 243 CAG36-38 individuals from the ENROLL study to complete the phenotype description. RESULTS: Global cognitive efficiency and performance in different cognitive subdomains were similar in small CAG36-38 and typically CAG40-42 expanded individuals. Chorea as the first symptom was significantly less frequent for CAG36-38 patients (P = 0.04) despite similar total motor scores at first visit. Total motor score at last visit was significantly lower in CAG36-38 carriers (P = 0.003). The similar cognitive and different motor profile of CAG36-38 (n = 243) and CAG40-42 (n = 4675) carriers was confirmed in the ENROLL database. Additionally, clinicians were significantly less confident in diagnosing Huntington's disease (P = 2.4e-8) and diagnosis happened significantly later in CAG36-38 (P = 2.2e-6) despite a similar age at symptom onset (P = 0.29). CONCLUSIONS: We showed that small CAG36-38 expansion carriers had a similar cognitive profile to those with the more common CAG40-42 expansions. These individuals may evade molecular diagnosis because of the absence of chorea rather than because of a low penetrance of symptoms. This finding should encourage neurologists to consider Huntington's disease in cognitively impaired elderly patients without typical chorea and anticipate consequences for genetic counseling in their offspring. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico , Corea/complicaciones , Fenotipo , Heterocigoto
5.
Mov Disord ; 38(3): 479-484, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592065

RESUMEN

BACKGROUND: The locus coeruleus/subcoeruleus complex (LC/LsC) is a structure comprising melanized noradrenergic neurons. OBJECTIVE: To study the LC/LsC damage across Parkinson's disease (PD) and atypical parkinsonism in a large group of subjects. METHODS: We studied 98 healthy control subjects, 47 patients with isolated rapid eye movement sleep behavior disorder (RBD), 75 patients with PD plus RBD, 142 patients with PD without RBD, 19 patients with progressive supranuclear palsy (PSP), and 19 patients with multiple system atrophy (MSA). Twelve patients with MSA had proven RBD. LC/LsC signal intensity was derived from neuromelanin magnetic resonance imaging using automated software. RESULTS: The signal intensity was reduced in all parkinsonian syndromes compared with healthy control subjects, except in PD without RBD. The signal intensity decreased as age increased. Moreover, the signal intensity was lower in MSA than in isolated RBD and PD without RBD groups. In PD, the signal intensity correlated negatively with the percentage of REM sleep without atonia. There were no differences in signal intensity between PD plus RBD, PSP, and MSA. CONCLUSIONS: Neuromelanin signal intensity was reduced in all parkinsonian disorders, except in PD without RBD. The presence of RBD in parkinsonian disorders appears to be associated with lower neuromelanin signal intensity. Furthermore, lower LC/LsC signal changes in PSP could be partly caused by the effect of age. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Trastornos Parkinsonianos/complicaciones , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/patología , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética/métodos
6.
Glia ; 70(3): 491-507, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773299

RESUMEN

Although calcium waves have been widely observed in glial cells, their occurrence in vivo during behavior remains less understood. Here, we investigated the recruitment of glial cells in the hindbrain and spinal cord after acousto-vestibular (AV) stimuli triggering escape responses using in vivo population calcium imaging in larval zebrafish. We observed that gap-junction-coupled spinal glial network exhibits large and homogenous calcium increases that rose in the rostral spinal cord and propagated bi-directionally toward the spinal cord and toward the hindbrain. Spinal glial calcium waves were driven by the recruitment of neurons and in particular, of noradrenergic signaling acting through α-adrenergic receptors. Noradrenergic neurons of the medulla-oblongata (NE-MO) were revealed in the vicinity of where the calcium wave started. NE-MO were recruited upon AV stimulation and sent dense axonal projections in the rostro-lateral spinal cord, suggesting these cells could trigger the glial wave to propagate down the spinal cord. Altogether, our results revealed that a simple AV stimulation is sufficient to recruit noradrenergic neurons in the brainstem that trigger in the rostral spinal cord two massive glial calcium waves, one traveling caudally in the spinal cord and another rostrally into the hindbrain.


Asunto(s)
Señalización del Calcio , Norepinefrina , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/metabolismo , Médula Espinal/metabolismo , Pez Cebra/metabolismo
7.
Genet Med ; 24(11): 2308-2317, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056923

RESUMEN

PURPOSE: Hereditary spastic paraplegia type 4 is extremely variable in age at onset; the same variant can cause onset at birth or in the eighth decade. We recently discovered that missense variants in SPAST, which influences microtubule dynamics, are associated with earlier onset and more severe disease than truncating variants, but even within the early and late-onset groups there remained significant differences in onset. Given the rarity of the condition, we adapted an extreme phenotype approach to identify genetic modifiers of onset. METHODS: We performed a genome-wide association study on 134 patients bearing truncating pathogenic variants in SPAST, divided into early- and late-onset groups (aged ≤15 and ≥45 years, respectively). A replication cohort of 419 included patients carrying either truncating or missense variants. Finally, age at onset was analyzed in the merged cohort (N = 553). RESULTS: We found 1 signal associated with earlier age at onset (rs10775533, P = 8.73E-6) in 2 independent cohorts and in the merged cohort (N = 553, Mantel-Cox test, P < .0001). Western blotting in lymphocytes of 20 patients showed that this locus tends to upregulate SARS2 expression in earlier-onset patients. CONCLUSION: SARS2 overexpression lowers the age of onset in hereditary spastic paraplegia type 4. Lowering SARS2 or improving mitochondrial function could thus present viable approaches to therapy.


Asunto(s)
Serina-ARNt Ligasa , Paraplejía Espástica Hereditaria , Humanos , Estudio de Asociación del Genoma Completo , Mutación , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Espastina/metabolismo
8.
Mov Disord ; 37(6): 1245-1255, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347754

RESUMEN

BACKGROUND: Neurodegeneration in the substantia nigra pars compacta (SNc) in parkinsonian syndromes may affect the nigral territories differently. OBJECTIVE: The objective of this study was to investigate the regional selectivity of neurodegenerative changes in the SNc in patients with Parkinson's disease (PD) and atypical parkinsonism using neuromelanin-sensitive magnetic resonance imaging (MRI). METHODS: A total of 22 healthy controls (HC), 38 patients with PD, 22 patients with progressive supranuclear palsy (PSP), 20 patients with multiple system atrophy (MSA, 13 with the parkinsonian variant, 7 with the cerebellar variant), 7 patients with dementia with Lewy body (DLB), and 4 patients with corticobasal syndrome were analyzed. volume and signal-to-noise ratio (SNR) values of the SNc were derived from neuromelanin-sensitive MRI in the whole SNc. Analysis of signal changes was performed in the sensorimotor, associative, and limbic territories of the SNc. RESULTS: SNc volume and corrected volume were significantly reduced in PD, PSP, and MSA versus HC. Patients with PSP had lower volume, corrected volume, SNR, and contrast-to-noise ratio than HC and patients with PD and MSA. Patients with PSP had greater SNR reduction in the associative region than HC and patients with PD and MSA. Patients with PD had reduced SNR in the sensorimotor territory, unlike patients with PSP. Patients with MSA did not differ from patients with PD. CONCLUSIONS: This study provides the first MRI comparison of the topography of neuromelanin changes in parkinsonism. The spatial pattern of changes differed between PSP and synucleinopathies. These nigral topographical differences are consistent with the topography of the extranigral involvement in parkinsonian syndromes. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Imagen por Resonancia Magnética/métodos , Melaninas , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología
9.
Bioinformatics ; 36(1): 186-196, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228193

RESUMEN

MOTIVATION: Huntington's disease (HD) may evolve through gene deregulation. However, the impact of gene deregulation on the dynamics of genetic cooperativity in HD remains poorly understood. Here, we built a multi-layer network model of temporal dynamics of genetic cooperativity in the brain of HD knock-in mice (allelic series of Hdh mice). To enhance biological precision and gene prioritization, we integrated three complementary families of source networks, all inferred from the same RNA-seq time series data in Hdh mice, into weighted-edge networks where an edge recapitulates path-length variation across source-networks and age-points. RESULTS: Weighted edge networks identify two consecutive waves of tight genetic cooperativity enriched in deregulated genes (critical phases), pre-symptomatically in the cortex, implicating neurotransmission, and symptomatically in the striatum, implicating cell survival (e.g. Hipk4) intertwined with cell proliferation (e.g. Scn4b) and cellular senescence (e.g. Cdkn2a products) responses. Top striatal weighted edges are enriched in modulators of defective behavior in invertebrate models of HD pathogenesis, validating their relevance to neuronal dysfunction in vivo. Collectively, these findings reveal highly dynamic temporal features of genetic cooperativity in the brain of Hdh mice where a 2-step logic highlights the importance of cellular maintenance and senescence in the striatum of symptomatic mice, providing highly prioritized targets. AVAILABILITY AND IMPLEMENTATION: Weighted edge network analysis (WENA) data and source codes for performing spectral decomposition of the signal (SDS) and WENA analysis, both written using Python, are available at http://www.broca.inserm.fr/HD-WENA/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Modelos Genéticos , Animales , Supervivencia Celular , Cuerpo Estriado/citología , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/patología
10.
Metabolomics ; 17(7): 67, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34228178

RESUMEN

INTRODUCTION: Serum phenotyping of elite cyclists regarding cortisol, IGF1 and testosterone is a way to detect endocrine disruptions possibly explained by exercise overload, non-balanced diet or by doping. This latter disruption-driven approach is supported by fundamental physiology although without any evidence of any metabolic markers. OBJECTIVES: Serum samples were distributed through Low, High or Normal endocrine classes according to hormone concentration. A 1H NMR metabolomic study of 655 serum obtained in the context of the longitudinal medical follow-up of 253 subjects was performed to discriminate the three classes for every endocrine phenotype. METHODS: An original processing algorithm was built which combined a partial-least squares-based orthogonal correction of metabolomic signals and a shrinkage discriminant analysis (SDA) to get satisfying classifications. An extended validation procedure was used to plan in larger size cohorts a minimal size to get a global prediction rate (GPR), i.e. the product of the three class prediction rates, higher than 99.9%. RESULTS: Considering the 200 most SDA-informative variables, a sigmoidal fitting of the GPR gave estimates of a minimal sample size to 929, 2346 and 1408 for cortisol, IGF1 and testosterone, respectively. Analysis of outliers from cortisol and testosterone Normal classes outside the 97.5%-confidence limit of score prediction revealed possibly (i) an inadequate protein intake for outliers or (ii) an intake of dietary ergogenics, glycine or glutamine, which might explain the significant presence of heterogeneous metabolic profiles in a supposedly normal cyclists subgroup. CONCLUSION: In a next validation metabolomics study of a so-sized cohort, anthropological, clinical and dietary metadata should be recorded in priority at the blood collection time to confirm these functional hypotheses.


Asunto(s)
Hidrocortisona , Metabolómica , Dieta , Humanos , Espectroscopía de Resonancia Magnética , Testosterona
11.
Mol Ther ; 28(8): 1887-1901, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32470325

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Locomoción , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Fenotipo , Pronóstico , Regiones Promotoras Genéticas , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción Genética , Resultado del Tratamiento
12.
Glia ; 68(9): 1891-1909, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32119167

RESUMEN

In vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node-like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein ß2Nav for node-like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node-like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset.


Asunto(s)
Axones , Neuronas GABAérgicas , Animales , Sistema Nervioso Central , Análisis por Conglomerados , Vaina de Mielina , Nódulos de Ranvier
13.
J Neurosci ; 38(35): 7667-7682, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30012693

RESUMEN

Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1R) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1R are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1R already produce GABA in E12.5 embryo, and that V1R make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1R are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (INap). This is the first demonstration that INap is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 µm riluzole, which is known to block INaP, altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of INaP in embryonic SC neurons may play a role in the early development of mammalian locomotor networks.SIGNIFICANCE STATEMENT The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1R) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents (INaP) in driving plateau potential in V1R and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for INaP in the excitability of V1R and the developing SC.


Asunto(s)
Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Células de Renshaw/fisiología , Canales de Sodio/fisiología , Sodio/fisiología , Médula Espinal/embriología , Potenciales de Acción , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/citología , Comunicación Paracrina , Técnicas de Placa-Clamp , Riluzol/farmacología , Médula Espinal/citología , Sinapsis/fisiología
14.
Acta Neuropathol ; 135(2): 267-283, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149419

RESUMEN

Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Cromatina/metabolismo , Glioblastoma/metabolismo , Anciano , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Células Cultivadas , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/patología , Código de Histonas , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factores del Dominio POU/metabolismo , Factor de Transcripción SOX9/metabolismo
15.
J Neurooncol ; 138(3): 487, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29549621

RESUMEN

The names of authors Marc Sanson and Jean-Yves Delattre were incorrectly presented in the initial online publication. The original article has been corrected.

16.
J Neurooncol ; 138(3): 479-486, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29520610

RESUMEN

ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM-PDCL. ABCA13 expression is an independent prognostic factor in newly diagnosed GBM patients. Further prospective studies are warranted to investigate whether ABCA13 expression can be used to further personalize treatments for GBM.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Quimioradioterapia , Estudios de Cohortes , Metilación de ADN , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Resistencia a Antineoplásicos/fisiología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Pronóstico , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Análisis de Supervivencia , Temozolomida/farmacología , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Hum Mol Genet ; 24(12): 3481-96, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25784504

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease associated with extensive down-regulation of genes controlling neuronal function, particularly in the striatum. Whether altered epigenetic regulation underlies transcriptional defects in HD is unclear. Integrating RNA-sequencing (RNA-seq) and chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq), we show that down-regulated genes in HD mouse striatum associate with selective decrease in H3K27ac, a mark of active enhancers, and RNA Polymerase II (RNAPII). In addition, we reveal that decreased genes in HD mouse striatum display a specific epigenetic signature, characterized by high levels and broad patterns of H3K27ac and RNAPII. Our results indicate that this signature is that of super-enhancers, a category of broad enhancers regulating genes defining tissue identity and function. Specifically, we reveal that striatal super-enhancers display extensive H3K27 acetylation within gene bodies, drive transcription characterized by low levels of paused RNAPII, regulate neuronal function genes and are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Together, our results provide evidence for preferential down-regulation of genes controlled by super-enhancers in HD striatum and indicate that enhancer topography is a major parameter determining the propensity of a gene to be deregulated in a neurodegenerative disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Enfermedad de Huntington/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Epigénesis Genética , Perfilación de la Expresión Génica , Histonas/metabolismo , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuronas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma
18.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28032215

RESUMEN

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Glioma/metabolismo , Hidroxibutiratos/metabolismo , Células Madre Neoplásicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Carcinogénesis/patología , Muerte Celular/fisiología , Proliferación Celular/fisiología , Niño , Preescolar , Femenino , Glioma/patología , Glioma/cirugía , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Succionato-Semialdehído Deshidrogenasa/metabolismo
19.
NPJ Parkinsons Dis ; 10(1): 72, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553467

RESUMEN

Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.

20.
Cogn Res Princ Implic ; 8(1): 23, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081292

RESUMEN

Healthcare professionals' statistical illiteracy can impair medical decision quality and compromise patient safety. Previous studies have documented clinicians' insufficient proficiency in statistics and a tendency in overconfidence. However, an underexplored aspect is clinicians' awareness of their lack of statistical knowledge that precludes any corrective intervention attempt. Here, we investigated physicians', residents' and medical students' alignment between subjective confidence judgments and objective accuracy in basic medical statistics. We also examined how gender, profile of experience and practice of research activity affect this alignment, and the influence of problem framing (conditional probabilities, CP vs. natural frequencies, NF). Eight hundred ninety-eight clinicians completed an online survey assessing skill and confidence on three topics: vaccine efficacy, p value and diagnostic test results interpretation. Results evidenced an overall consistent poor proficiency in statistics often combined with high confidence, even in incorrect answers. We also demonstrate that despite overconfidence bias, clinicians show a degree of metacognitive sensitivity, as their confidence judgments discriminate between their correct and incorrect answers. Finally, we confirm the positive impact of the more intuitive NF framing on accuracy. Together, our results pave the way for the development of teaching recommendations and pedagogical interventions such as promoting metacognition on basic knowledge and statistical reasoning as well as the use of NF to tackle statistical illiteracy in the medical context.


Asunto(s)
Ilusiones , Metacognición , Médicos , Humanos , Juicio , Personal de Salud , Médicos/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA