Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38373106

RESUMEN

BACKGROUND AND AIMS: Sustained inflammation and hepatocyte injury in chronic liver disease activate HSCs to transdifferentiate into fibrogenic, contractile myofibroblasts. We investigated the role of protocadherin 7 (PCDH7), a cadherin family member not previously characterized in the liver, whose expression is restricted to HSCs. APPROACH AND RESULTS: We created a PCDH7 fl/fl mouse line, which was crossed to lecithin retinol acyltransferase-Cre mice to generate HSC-specific PCDH7 knockout animals. HSC contraction in vivo was tested in response to the HSC-selective vasoconstrictor endothelin-1 using intravital multiphoton microscopy. To establish a PCDH7 null HSC line, cells were isolated from PCDH7 fl/fl mice and infected with adenovirus-expressing Cre. Hepatic expression of PCDH7 was strictly restricted to HSCs. Knockout of PCDH7 in vivo abrogated HSC-mediated sinusoidal contraction in response to endothelin-1. In cultured HSCs, loss of PCDH7 markedly attenuated contractility within collagen gels and led to altered gene expression in pathways governing adhesion and vasoregulation. Loss of contractility in PCDH7 knockout cells was impaired Rho-GTPase signaling, as demonstrated by altered gene expression, reduced assembly of F-actin fibers, and loss of focal adhesions. CONCLUSIONS: The stellate cell-specific cadherin, PCDH7, is a novel regulator of HSC contractility whose loss leads to cytoskeletal remodeling and sinusoidal relaxation.

2.
J Biol Chem ; 298(9): 102336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931111

RESUMEN

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Asunto(s)
Colorantes Fluorescentes , Quelantes del Hierro , Mitocondrias , Animales , Calcio/metabolismo , Cationes Bivalentes/análisis , Células Cultivadas , Fluorescencia , Colorantes Fluorescentes/química , Quelantes del Hierro/análisis , Ratones , Mitocondrias/química , Proteínas Mitocondriales/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacología
3.
Toxicol Appl Pharmacol ; 479: 116722, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37848124

RESUMEN

Acetaminophen (APAP) overdose disrupts hepatocellular lysosomes, which release ferrous iron (Fe2+) that translocates into mitochondria putatively via the mitochondrial calcium uniporter (MCU) to induce oxidative/nitrative stress, the mitochondrial permeability transition (MPT), and hepatotoxicity. To investigate how MCU deficiency affects mitochondrial Fe2+ uptake and hepatotoxicity after APAP overdose, global MCU knockout (KO), hepatocyte specific (hs) MCU KO, and wildtype (WT) mice were treated with an overdose of APAP both in vivo and in vitro. Compared to strain-specific WT mice, serum ALT decreased by 88 and 56%, respectively, in global and hsMCU KO mice at 24 h after APAP (300 mg/kg). Hepatic necrosis also decreased by 84 and 56%. By contrast, when MCU was knocked out in Kupffer cells, ALT release and necrosis were unchanged after overdose APAP. Intravital multiphoton microscopy confirmed loss of viability and mitochondrial depolarization in pericentral hepatocytes of WT mice, which was decreased in MCU KO mice. CYP2E1 expression, hepatic APAP-protein adduct formation, and JNK activation revealed that APAP metabolism was equivalent between WT and MCU KO mice. In cultured hepatocytes after APAP, loss of cell viability decreased in hsMCU KO compared to WT hepatocytes. Using fructose plus glycine to prevent cell killing, mitochondrial Fe2+ increased progressively after APAP, as revealed with mitoferrofluor (MFF), a mitochondrial Fe2+ indicator. By contrast in hsMCU KO hepatocytes, mitochondrial Fe2+ uptake after APAP was suppressed. Rhod-2 measurements showed that Ca2+ did not increase in mitochondria after APAP in either WT or KO hepatocytes. In conclusion, MCU mediates uptake of Fe2+ into mitochondria after APAP and plays a central role in mitochondrial depolarization and cell death during APAP-induced hepatotoxicity.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Acetaminofén/toxicidad , Mitocondrias Hepáticas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Mitocondrias/metabolismo , Hepatocitos/metabolismo , Necrosis/metabolismo , Ratones Endogámicos C57BL
4.
Toxicol Appl Pharmacol ; 445: 116043, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513057

RESUMEN

Acetaminophen (APAP) hepatotoxicity, a leading cause of acute liver failure in western countries, is characterized by mitochondrial superoxide and peroxynitrite formation. However, the role of iron, especially as facilitator of lipid peroxidation (LPO), has been controversial. Our aim was to determine the mechanism by which iron promotes cell death in this context. Fasted male C57BL/6J mice were treated with the iron chelator deferoxamine, minocycline (inhibitor of the mitochondrial calcium uniporter) or vehicle 1 h before 300 mg/kg APAP. Deferoxamine and minocycline significantly attenuated APAP-induced elevations in serum alanine amino transferase levels and hepatic necrosis at 6 h. This protection correlated with reduced 3-nitro-tyrosine protein adducts; LPO (malondialdehyde, 4-hydroxynonenal) was not detected. Activation of c-jun N-terminal kinase (JNK) was not affected but mitochondrial release of intermembrane proteins was reduced suggesting that the effect of iron was at the level of mitochondria. Co-treatment of APAP with FeSO4 exacerbated liver injury and protein nitration and triggered significant LPO; all effects were reversed by deferoxamine. Thus, after APAP overdose, iron imported into mitochondria facilitates protein nitration by peroxynitrite triggering mitochondrial dysfunction and cell death. Under these conditions, endogenous defense mechanisms largely prevent LPO. However, after iron overload, protein nitration and LPO contribute to APAP hepatotoxicity.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Deferoxamina/farmacología , Hepatocitos , Hierro/metabolismo , Peroxidación de Lípido , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Minociclina/farmacología , Mitocondrias Hepáticas , Estrés Oxidativo , Ácido Peroxinitroso/farmacología
5.
EMBO Rep ; 21(11): e50202, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32975364

RESUMEN

Mitochondrial quality is controlled by the selective removal of damaged mitochondria through mitophagy. Mitophagy impairment is associated with aging and many pathological conditions. An iron loss induced by iron chelator triggers mitophagy by a yet unknown mechanism. This type of mitophagy may have therapeutic potential, since iron chelators are clinically used. Here, we aimed to clarify the mechanisms by which iron loss induces mitophagy. Deferiprone, an iron chelator, treatment resulted in the increased expression of mitochondrial ferritin (FTMT) and the localization of FTMT precursor on the mitochondrial outer membrane. Specific protein 1 and its regulator hypoxia-inducible factor 1α were necessary for deferiprone-induced increase in FTMT. FTMT specifically interacted with nuclear receptor coactivator 4, an autophagic cargo receptor. Deferiprone-induced mitophagy occurred selectively for depolarized mitochondria. Additionally, deferiprone suppressed the development of hepatocellular carcinoma (HCC) in mice by inducing mitophagy. Silencing FTMT abrogated deferiprone-induced mitophagy and suppression of HCC. These results demonstrate the mechanisms by which iron loss induces mitophagy and provide a rationale for targeting mitophagic activation as a therapeutic strategy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ferritinas/genética , Hierro/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Mitofagia
6.
J Nat Prod ; 85(7): 1779-1788, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35815804

RESUMEN

Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Combinación de Medicamentos , Glicósidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Necrosis/inducido químicamente , Necrosis/tratamiento farmacológico , Necrosis/metabolismo , Estrés Oxidativo , Fenoles
7.
Toxicol Appl Pharmacol ; 392: 114930, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32109512

RESUMEN

Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction. Previous studies showed that translocation of Fe2+ from lysosomes into mitochondria by the mitochondrial Ca2+ uniporter (MCU) promotes the mitochondrial permeability transition (MPT) after APAP. Here, our Aim was to assess protection by iron chelation and MCU inhibition against APAP hepatotoxicity in mice. C57BL/6 mice and hepatocytes were administered toxic doses of APAP with and without starch-desferal (an iron chelator), minocycline (MCU inhibitor), or N-acetylcysteine (NAC). In mice, starch-desferal and minocycline pretreatment decreased ALT and liver necrosis after APAP by >60%. At 24 h after APAP, loss of fluorescence of mitochondrial rhodamine 123 occurred in pericentral hepatocytes often accompanied by propidium iodide labeling, indicating mitochondrial depolarization and cell death. Starch-desferal and minocycline pretreatment decreased mitochondrial depolarization and cell death by more than half. In cultured hepatocytes, cell killing at 10 h after APAP decreased from 83% to 49%, 35% and 27%, respectively, by 1 h posttreatment with minocycline, NAC, and minocycline plus NAC. With 4 h posttreatment in vivo, minocycline and minocycline plus NAC decreased ALT and necrosis by ~20% and ~50%, respectively, but NAC alone was not effective. In conclusion, minocycline and starch-desferal decrease mitochondrial dysfunction and severe liver injury after APAP overdose, suggesting that the MPT is likely triggered by iron uptake into mitochondria through MCU. In vivo, minocycline and minocycline plus NAC posttreatment after APAP protect at later time points than NAC alone, indicating that minocycline has a longer window of efficacy than NAC.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hierro/metabolismo , Lisosomas/efectos de los fármacos , Minociclina/farmacología , Mitocondrias/metabolismo , Acetaminofén/administración & dosificación , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/toxicidad , Animales , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sobredosis de Droga , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Toxicol Appl Pharmacol ; 396: 114982, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240663

RESUMEN

Oxidative stress contributes to acetaminophen (APAP) hepatotoxicity. Since lipid peroxidation produces reactive aldehydes, we investigated whether activation of mitochondrial aldehyde dehydrogenase-2 (ALDH2) with Alda-1 decreases liver injury after APAP. Male C57BL/6 mice fasted overnight received Alda-1 (20 mg/kg, i.p.) or vehicle 30 min before APAP (300 mg/kg, i.p.). Blood and livers were collected 2 or 24 h after APAP. Intravital multiphoton microscopy of rhodamine 123 (Rh123) and propidium iodide (PI) fluorescence was conducted 6 h after APAP administration to detect mitochondrial polarization status and cell death. 4-Hydroxynonenal protein adducts were present in 0.1% of tissue area without APAP treatment but increased to 7% 2 h after APAP treatment, which Alda-1 blunted to 1%. Serum alanine and aspartate aminotransferases increased to 7594 and 9768 U/L at 24 h respectively, which decreased ≥72% by Alda-1. Alda-1 also decreased centrilobular necrosis at 24 h after APAP from 47% of lobular areas to 21%. N-acetyl-p-benzoquinone imine protein adduct formation and c-Jun-N-terminal kinase phosphorylation increased after APAP as expected, but Alda-1 did not alter these changes. Without APAP, no mitochondrial depolarization was detected by intravital microscopy. At 6 h after APAP, 62% of tissue area showed depolarization, which decreased to 33.5% with Alda-1. Cell death as detected by PI labeling increased from 0 to 6.8 cells per 30× field 6 h after APAP, which decreased to 0.6 cells by Alda-1. In conclusion, aldehydes are important mediators of APAP hepatotoxicity. Accelerated aldehyde degradation by ALDH2 activation with Alda-1 decreases APAP hepatotoxicity by protection against mitochondrial dysfunction.


Asunto(s)
Acetaminofén/toxicidad , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Mitocondrias Hepáticas/efectos de los fármacos , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Benzamidas/farmacología , Benzodioxoles/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Activación Enzimática , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica , Mitocondrias Hepáticas/metabolismo
9.
J Mol Cell Cardiol ; 114: 309-319, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29224834

RESUMEN

RATIONALE: Recent evidence indicates that histone deacetylase enzymes (HDACs) contribute to ischemia reperfusion (I/R) injury, and pan-HDAC inhibitors have been shown to be cardioprotective when administered either before an ischemic insult or during reperfusion. We have shown previously that selective inhibition of class I HDACs provides superior cardioprotection when compared to pan-HDAC inhibition in a pretreatment model, but selective class I HDAC inhibition has not been tested during reperfusion, and specific targets of class I HDACs in I/R injury have not been identified. OBJECTIVE: We hypothesized that selective inhibition of class I HDACs with the drug MS-275 (entinostat) during reperfusion would improve recovery from I/R injury in the first hour of reperfusion. METHODS AND RESULTS: Hearts from male Sprague-Dawley rats were subjected to ex vivo I/R injury±MS-275 class I HDAC inhibition during reperfusion alone. MS-275 significantly attenuated I/R injury, as indicated by improved LV function and tissue viability at the end of reperfusion. Unexpectedly, we observed that HDAC1 is present in the mitochondria of cardiac myocytes, but not fibroblasts or endothelial cells. We then designed mitochondria-restricted and mitochondria-excluded HDAC inhibitors, and tested both in our ex vivo I/R model. The selective inhibition of mitochondrial HDAC1 attenuated I/R injury to the same extent as MS-275, whereas the mitochondrial-excluded inhibitor did not. Further assays demonstrated that these effects are attributable to a decrease in SDHA activity and subsequent metabolic ROS production in reperfusion. CONCLUSIONS: We demonstrate for the first time that HDAC1 is present within the mitochondria of cardiac myocytes, and mitochondrial HDAC1 contributes significantly to I/R injury within the first hour of reperfusion.


Asunto(s)
Mitocondrias/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocitos Cardíacos/enzimología , Animales , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/patología , Consumo de Oxígeno/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Función Ventricular/efectos de los fármacos
10.
J Lipid Res ; 59(2): 312-329, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282302

RESUMEN

Inhibiting the glutamate/cystine antiporter system xc-, a key antioxidant defense machinery in the CNS, could trigger a novel form of regulated necrotic cell death, ferroptosis. The underlying mechanisms of system xc--dependent cell demise were elucidated using primary oligodendrocytes (OLs) treated with glutamate to block system xc- function. Pharmacological analysis revealed ferroptosis as a major contributing factor to glutamate-initiated OL death. A sphingolipid profile showed elevations of ceramide species and sphingosine that were preventable by inhibiting of an acid sphingomyelinase (ASM) activity. OL survival was enhanced by both downregulating ASM expression and blocking ASM activity. Glutamate-induced ASM activation seems to involve posttranscriptional mechanisms and was associated with a decreased GSH level. Further investigation of the mechanisms of OL response to glutamate revealed enhanced reactive oxygen species production, augmented lipid peroxidation, and opening of the mitochondrial permeability transition pore that were attenuated by hindering ASM. Of note, knocking down sirtuin 3, a deacetylase governing the mitochondrial antioxidant system, reduced OL survival. The data highlight the importance of the mitochondrial compartment in regulated necrotic cell death and accentuate the novel role of ASM in disturbing mitochondrial functions during OL response to glutamate toxicity, which is essential for pathobiology in stroke and traumatic brain injury.


Asunto(s)
Ácido Glutámico/farmacología , Mitocondrias/enzimología , Mitocondrias/patología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células Cultivadas , Femenino , Ratones , Mitocondrias/efectos de los fármacos , Necrosis/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
11.
Arch Biochem Biophys ; 654: 70-76, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30009781

RESUMEN

In this study, we examined the effects of uridine on plasma cytokine levels, heat shock protein (HSP) 72 expression, and nuclear factor (NF)-κB signaling in spleen lymphocytes after exposure of male BALB/c mice to Escherichia coli lipopolysaccharide (LPS). Mice were treated with uridine (30 mg/kg body weight, intraperitoneal injection [i.p.]) or saline solution of LPS (2.5 mg/kg, i. p.). Endotoxin increased plasma levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-2, and IL-6 by 2.1-, 1.9-, 1.7-, 1.6-, and 2.3-fold, respectively. Prior treatment with uridine prevented LPS-induced increases in all studied cytokines. In splenic lymphocytes, LPS treatment increased the expression of HSP 72 by 2.4-fold, whereas preliminary treatment with uridine completely prevented this effect. LPS also activated NF-κB signaling in splenic lymphocytes, and uridine decreased NF-κB pathway activity. Inhibitory analysis showed that the mechanism of uridine action was associated with the formation of the UDP-metabolic activator of the mitochondrial ATP-dependent potassium channel (mitoKATP) and the UTP-activator of glycogen synthesis in the tissues. A specific inhibitor of mitoKATP, 5-hydroxydecanoate (5 mg/kg), and an inhibitor of glycogen synthesis, galactosamine (110 mg/kg), prevented the effects of uridine. Thus, uridine itself or uridine phosphates, which increased after uridine treatment, appeared to inhibit pro-inflammatory responses induced by LPS application. Overall, these findings demonstrated that the mechanisms mediating the effects of uridine were regulated by activation of glycogen synthesis and opening of the mitoKATP, which in turn increased the energy potential of the cell and reduced oxidative stress.


Asunto(s)
Antiinflamatorios/uso terapéutico , Endotoxemia/tratamiento farmacológico , Canales de Potasio/fisiología , Uridina/uso terapéutico , Animales , Citocinas/sangre , Endotoxemia/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal
12.
Alcohol Clin Exp Res ; 42(11): 2072-2089, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30132924

RESUMEN

The pathogenesis of alcoholic liver disease (ALD) remains poorly understood but is likely a multihit pathophysiological process. Here, we propose a hypothesis of how early mitochondrial adaptations for alcohol metabolism lead to ALD pathogenesis. Acutely, ethanol (EtOH) feeding causes a near doubling of hepatic EtOH metabolism and oxygen consumption within 2 to 3 hours. This swift increase in alcohol metabolism (SIAM) is an adaptive response to hasten metabolic elimination of both EtOH and its more toxic metabolite, acetaldehyde (AcAld). In association with SIAM, EtOH causes widespread hepatic mitochondrial depolarization (mtDepo), which stimulates oxygen consumption. In parallel, voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane close. Together, VDAC closure and respiratory stimulation promote selective and more rapid oxidation of EtOH first to AcAld in the cytosol and then to nontoxic acetate in mitochondria, since membrane-permeant AcAld does not require VDAC to enter mitochondria. VDAC closure also inhibits mitochondrial fatty acid oxidation and ATP release, promoting steatosis and a decrease in cytosolic ATP. After acute EtOH, these changes revert as EtOH is eliminated with little hepatocellular cytolethality. mtDepo also stimulates mitochondrial autophagy (mitophagy). After chronic high EtOH exposure, the capacity to process depolarized mitochondria by mitophagy becomes compromised, leading to intra- and extracellular release of damaged mitochondria, mitophagosomes, and/or autolysosomes containing mitochondrial damage-associated molecular pattern (mtDAMP) molecules. mtDAMPs cause inflammasome activation and promote inflammatory and profibrogenic responses, causing hepatitis and fibrosis. We propose that persistence of mitochondrial responses to EtOH metabolism becomes a tipping point, which links initial adaptive EtOH metabolism to maladaptive changes initiating onset and progression of ALD.


Asunto(s)
Depresores del Sistema Nervioso Central/metabolismo , Etanol/metabolismo , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hígado/metabolismo , Hígado/patología , Adaptación Fisiológica , Animales , Humanos
13.
J Biol Chem ; 291(37): 19642-50, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27458020

RESUMEN

Non-proliferating cells oxidize respiratory substrates in mitochondria to generate a protonmotive force (Δp) that drives ATP synthesis. The mitochondrial membrane potential (ΔΨ), a component of Δp, drives release of mitochondrial ATP(4-) in exchange for cytosolic ADP(3-) via the electrogenic adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane, which leads to a high cytosolic ATP/ADP ratio up to >100-fold greater than matrix ATP/ADP. In rat hepatocytes, ANT inhibitors, bongkrekic acid (BA), and carboxyatractyloside (CAT), and the F1FO-ATP synthase inhibitor, oligomycin (OLIG), inhibited ureagenesis-induced respiration. However, in several cancer cell lines, OLIG but not BA and CAT inhibited respiration. In hepatocytes, respiratory inhibition did not collapse ΔΨ until OLIG, BA, or CAT was added. Similarly, in cancer cells OLIG and 2-deoxyglucose, a glycolytic inhibitor, depolarized mitochondria after respiratory inhibition, which showed that mitochondrial hydrolysis of glycolytic ATP maintained ΔΨ in the absence of respiration in all cell types studied. However in cancer cells, BA, CAT, and knockdown of the major ANT isoforms, ANT2 and ANT3, did not collapse ΔΨ after respiratory inhibition. These findings indicated that ANT was not mediating mitochondrial ATP/ADP exchange in cancer cells [corrected]. We propose that suppression of ANT contributes to low cytosolic ATP/ADP, activation of glycolysis, and a Warburg metabolic phenotype in proliferating cells.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Translocador 3 del Nucleótido Adenina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Hepatocitos/patología , Masculino , Mitocondrias Hepáticas/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
14.
Biochim Biophys Acta Biomembr ; 1859(1): 94-103, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27836641

RESUMEN

The process of aging is considered to be tightly related to mitochondrial dysfunction. One of the causes of aging is an increased sensitivity to the induction of mitochondrial permeability transition pore (mPTP) opening in the inner membrane of mitochondria. Melatonin, a natural antioxidant, is a hormone produced by the pineal gland. The role of melatonin whose level decreases with aging is well understood. In the present study, we demonstrated that long-term treatment of aged rats with melatonin improved the functional state of mitochondria; thus, the Ca2+ capacity was enhanced and mitochondrial swelling was deaccelerated in mitochondria. Melatonin prevented mPTP and impaired the release of cytochrome c and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) from mitochondria of both young and aged rats. Our data suggest that melatonin retains СNPase inside mitochondria, thereby providing the protection of the protein against deleterious effects of 2',3'-cAMP in aging.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Envejecimiento/metabolismo , Antioxidantes/farmacología , Melatonina/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Citocromos c/antagonistas & inhibidores , Citocromos c/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Ratas
15.
J Bioenerg Biomembr ; 49(3): 253-264, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28478591

RESUMEN

Chronic alcohol intoxication is associated with increased oxidative stress. However, the mechanisms by which ethanol triggers an increase in the production of reactive oxygen species (ROS) and the role of mitochondria in the development of oxidative stress has been insufficiently studied. The biochemical and proteomic data obtained in the present work suggest that one of the main causes of an increase in ROS generation is enhanced oxidation of glutamate in response to long-term alcohol exposure. In the course of glutamate oxidation, liver mitochondria from alcoholic rats generated more superoxide anion and H2O2 than in the presence of other substrates and more than control organelles. In mitochondria from alcoholic rats, rates of H2O2 production and NAD reduction in the presence of glutamate were almost twice higher than in the control. The proteomic study revealed a higher content of glutamate dehydrogenase in liver mitochondria of rats subjected to chronic alcohol exposure. Simultaneously, the content of mitochondrial catalase decreased compared to control. Each of these factors stimulates the production of ROS in addition to ROS generated by the respiratory chain complex I. The results are consistent with the conclusion that glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria.


Asunto(s)
Alcoholismo/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Etanol/toxicidad , Ácido Glutámico/farmacología , Mitocondrias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Alcoholismo/enzimología , Animales , Mitocondrias Hepáticas/enzimología , Proteómica/métodos , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
16.
Biochim Biophys Acta ; 1848(10 Pt A): 2200-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26014488

RESUMEN

The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 µM) and the anionic surfactant sodium dodecylsulfate (10-50 µM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening.


Asunto(s)
Calcio/farmacología , Permeabilidad de la Membrana Celular/fisiología , Liposomas/química , Membranas Mitocondriales/fisiología , Palmitatos/farmacología , Animales , Calcio/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Iones , Membranas Mitocondriales/efectos de los fármacos , Palmitatos/química , Porosidad/efectos de los fármacos , Ratas , Ratas Wistar , Electricidad Estática , Propiedades de Superficie/efectos de los fármacos
17.
J Hepatol ; 63(1): 68-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25703084

RESUMEN

BACKGROUND & AIMS: Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. METHODS: Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. RESULTS: After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. CONCLUSION: The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Supervivencia de Injerto , Trasplante de Hígado , Hígado/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Apoptosis , Muerte , Modelos Animales de Enfermedad , Immunoblotting , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal
18.
J Biol Chem ; 288(1): 677-86, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23135267

RESUMEN

Photodynamic therapy (PDT) is a promising approach to treat head and neck cancer cells. Here, we investigated whether mitochondrial iron uptake through mitoferrin-2 (Mfrn2) enhanced PDT-induced cell killing. Three human head and neck squamous carcinoma cell lines (UMSCC1, UMSCC14A, and UMSCC22A) were exposed to light and Pc 4, a mitochondria-targeted photosensitizer. The three cell lines responded differently: UMSCC1 and UMSCC14A cells were more resistant, whereas UMSCC22A cells were more sensitive to Pc 4-PDT-induced cell death. In non-erythroid cells, Mfrn2 is an iron transporter in the mitochondrial inner membrane. PDT-sensitive cells expressed higher Mfrn2 mRNA and protein levels compared with PDT-resistant cells. High Mfrn2-expressing cells showed higher rates of mitochondrial Fe(2+) uptake compared with low Mfrn2-expressing cells. Bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes that causes lysosomal iron release to the cytosol, enhanced PDT-induced cell killing of both resistant and sensitive cells. Iron chelators and the inhibitor of the mitochondrial Ca(2+) (and Fe(2+)) uniporter, Ru360, protected against PDT plus bafilomycin toxicity. Knockdown of Mfrn2 in UMSCC22A cells decreased the rate of mitochondrial Fe(2+) uptake and delayed PDT plus bafilomycin-induced mitochondrial depolarization and cell killing. Taken together, the data suggest that lysosomal iron release and Mfrn2-dependent mitochondrial iron uptake act synergistically to induce PDT-mediated and iron-dependent mitochondrial dysfunction and subsequent cell killing. Furthermore, Mfrn2 represents a possible biomarker of sensitivity of head and neck cancers to cell killing after PDT.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/metabolismo , Hierro/metabolismo , Hierro/farmacocinética , Mitocondrias/metabolismo , Fotoquimioterapia/métodos , Carcinoma de Células Escamosas/terapia , Línea Celular Tumoral , Quelantes/farmacología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Hierro/química , Lisosomas/metabolismo , Macrólidos/farmacología , Microscopía Confocal/métodos , Modelos Biológicos , Especies Reactivas de Oxígeno , Factores de Tiempo
19.
J Biol Chem ; 288(17): 11920-9, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23471966

RESUMEN

Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms--VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacología , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/genética , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Membrana Dobles de Lípidos/metabolismo , Neoplasias Hepáticas/genética , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , NADP/genética , NADP/metabolismo , Proteínas de Neoplasias/genética , Oxidación-Reducción , Canales Aniónicos Dependientes del Voltaje/genética
20.
Am J Physiol Renal Physiol ; 307(5): F551-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899059

RESUMEN

Polycystic kidney disease (PKD) is a common genetic disorder leading to cyst formation in the kidneys and other organs that ultimately results in kidney failure and death. Currently, there is no therapy for slowing down or stopping the progression of PKD. In this study, we identified the disintegrin metalloenzyme 17 (ADAM17) as a key regulator of cell proliferation in kidney tissues of conditional knockout Ift88(-/-) mice and collecting duct epithelial cells from Ift88°(rpk) mice, animal models of autosomal recessive polycystic kidney disease (ARPKD). Using Western blotting, an enzyme activity assay, and a growth factor-shedding assay in the presence or absence of the specific ADAM17 inhibitor TMI-005, we show that increased expression and activation of ADAM17 in the cystic kidney and in collecting duct epithelial cells originating from the Ift88°(rpk) mice (designated as PKD cells) lead to constitutive shedding of several growth factors, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, and transforming growth factor-α (TGF-α). Increased growth factor shedding induces activation of the EGFR/MAPK/ERK pathway and maintains higher cell proliferation rate in PKD cells compared with control cells. PKD cells also displayed increased lactate formation and extracellular acidification indicative of aerobic glycolysis (Warburg effect), which was blocked by ADAM17 inhibition. We propose that ADAM17 is a key promoter of cellular proliferation in PKD cells by activating the EGFR/ERK axis and a proproliferative glycolytic phenotype.


Asunto(s)
Proteínas ADAM/fisiología , Proliferación Celular/fisiología , Células Epiteliales/patología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Glucólisis/fisiología , Túbulos Renales Colectores/patología , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/efectos de los fármacos , Proteína ADAM17 , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Receptores ErbB/fisiología , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/fisiología , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/fisiopatología , Masculino , Ratones , Ratones Noqueados , Morfolinas/farmacología , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Factor de Crecimiento Transformador alfa/fisiología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA