Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 608(7923): 563-568, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859171

RESUMEN

A fundamental gap in the study of the origin of limbed vertebrates lies in understanding the morphological and functional diversity of their closest relatives. Whereas analyses of the elpistostegalians Panderichthys rhombolepis, Tiktaalik roseae and Elpistostege watsoni have revealed a sequence of changes in locomotor, feeding and respiratory structures during the transition1-9, an isolated bone, a putative humerus, has controversially hinted at a wider range in form and function than now recognized10-14. Here we report the discovery of a new elpistostegalian from the Late Devonian period of the Canadian Arctic that shows surprising disparity in the group. The specimen includes partial upper and lower jaws, pharyngeal elements, a pectoral fin and scalation. This new genus is phylogenetically proximate to T. roseae and E. watsoni but evinces notable differences from both taxa and, indeed, other described tetrapodomorphs. Lacking processes, joint orientations and muscle scars indicative of appendage-based support on a hard substrate13, its pectoral fin shows specializations for swimming that are unlike those known from other sarcopterygians. This unexpected morphological and functional diversity represents a previously hidden ecological expansion, a secondary return to open water, near the origin of limbed vertebrates.


Asunto(s)
Evolución Biológica , Peces , Fósiles , Aletas de Animales/anatomía & histología , Escamas de Animales/anatomía & histología , Animales , Regiones Árticas , Canadá , Peces/anatomía & histología , Peces/clasificación , Historia Antigua , Mandíbula/anatomía & histología , Faringe/anatomía & histología , Filogenia , Natación
2.
Proc Natl Acad Sci U S A ; 121(15): e2316106121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564638

RESUMEN

The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix. Therefore, it is unclear in what sequence and under what functional context specializations in the axial skeletons of tetrapods arose. Here, we describe the axial skeleton of the elpistostegalian Tiktaalik roseae and show that transformations to the axial column for head mobility, body support, and pelvic fin buttressing evolved in finned vertebrates prior to the origin of limbs. No atlas-axis complex is observed; however, an independent basioccipital-exoccipital complex suggests increased mobility at the occipital vertebral junction. While the construction of vertebrae in Tiktaalik is similar to early tetrapodomorphs, its ribs possess a specialized sacral domain. Sacral ribs are expanded and ventrally curved, indicating likely attachment to the expanded iliac blade of the pelvis by ligamentous connection. Thus, the origin of novel rib types preceded major alterations to trunk vertebrae, and linkage between pelvic fins and axial column preceded the origin of limbs. These data reveal an unexpected combination of post-cranial skeletal characters, informing hypotheses of body posture and movement in the closest relatives of limbed vertebrates.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Vertebrados , Huesos , Extremidad Inferior
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526593

RESUMEN

Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, Tiktaalik roseae, was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping. Lateral sliding joints between the cheek and dermal skull roof, as well as independent mobility between the hyomandibula and palatoquadrate, enable the suspensorium of T. roseae to expand laterally in a manner similar to modern alligator gars and polypterids. This movement can expand the spiracular and opercular cavities during feeding and respiration, which would direct fluid through the feeding apparatus. Detailed analysis of the sutural morphology of T. roseae suggests that the ability to laterally expand the cheek and palate was maintained during the fish-to-tetrapod transition, implying that limited cranial kinesis was plesiomorphic to the earliest limbed vertebrates. Furthermore, recent kinematic studies of feeding in gars demonstrate that prey capture with lateral snapping can synergistically combine both biting and suction, rather than trading off one for the other. A "gar-like" stage in early tetrapod evolution might have been an important intermediate step in the evolution of terrestrial feeding systems by maintaining suction-generation capabilities while simultaneously elaborating a mechanism for biting-based prey capture.


Asunto(s)
Evolución Biológica , Cordados/fisiología , Ingestión de Alimentos , Fósiles/anatomía & histología , Cráneo/anatomía & histología , Animales , Cordados/anatomía & histología , Conducta Alimentaria , Boca/anatomía & histología
4.
Proc Natl Acad Sci U S A ; 117(3): 1612-1620, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31888998

RESUMEN

The fin-to-limb transition was marked by the origin of digits and the loss of dermal fin rays. Paleontological research into this transformation has focused on the evolution of the endoskeleton, with little attention paid to fin ray structure and function. To address this knowledge gap, we study the dermal rays of the pectoral fins of 3 key tetrapodomorph taxa-Sauripterus taylori (Rhizodontida), Eusthenopteron foordi (Tristichopteridae), and Tiktaalik roseae (Elpistostegalia)-using computed tomography. These data show several trends in the lineage leading to digited forms, including the consolidation of fin rays (e.g., reduced segmentation and branching), reduction of the fin web, and unexpectedly, the evolution of asymmetry between dorsal and ventral hemitrichia. In Eusthenopteron, dorsal rays cover the preaxial endoskeleton slightly more than ventral rays. In Tiktaalik, dorsal rays fully cover the third and fourth mesomeres, while ventral rays are restricted distal to these elements, suggesting the presence of ventralized musculature at the fin tip analogous to a fleshy "palm." Asymmetry is also observed in cross-sectional areas of dorsal and ventral rays. Eusthenopteron dorsal rays are slightly larger than ventral rays; by contrast, Tiktaalik dorsal rays can be several times larger than ventral rays, and degree of asymmetry appears to be greater at larger sizes. Analysis of extant osteichthyans suggests that cross-sectional asymmetry in the dermal rays of paired fins is plesiomorphic to crown group osteichthyans. The evolution of dermal rays in crownward stem tetrapods reflects adaptation for a fin-supported elevated posture and resistance to substrate-based loading prior to the origin of digits.


Asunto(s)
Aletas de Animales/anatomía & histología , Extremidades/anatomía & histología , Peces/anatomía & histología , Anfibios , Aletas de Animales/fisiología , Animales , Evolución Biológica , Extremidades/fisiología , Peces/fisiología , Fósiles , Paleontología , Tomografía Computarizada por Rayos X
5.
J Anat ; 218(1): 59-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21091693

RESUMEN

The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate-articular joint. Stiffness was varied systematically in each theoretical phenotype. The three theoretical phenotypes included: (i) linear elastic isotropic bone of varying stiffness and no sutures; (ii) linear elastic orthotropic bone of varying stiffness with no sutures; and (iii) linear elastic isotropic bone of a constant stiffness with varying suture stiffness. Variation in the isotropic material properties of bone primarily resulted in changes in the magnitude of principal strain. By comparison, variation in the orthotropic material properties of bone and isotropic material properties of sutures resulted in: a greater number of bricks becoming either more compressive or more tensile, changing between being either dominantly compressive or tensile, and having larger changes in the orientation of maximum principal strain. These data indicate that variation in these model properties resulted in changes to the strain regime of the model, highlighting the importance of using biologically verified material properties when modeling vertebrate bones. When bones were compared within each set, the response of each to changing material properties varied. In two of the 12 bones in the mandible, varied material properties within sutures resulted in a decrease in the magnitude of principal strain in bricks adjacent to the bone/suture interface and decreases in stored elastic energy. The varied response of the mandibular bones to changes in suture stiffness highlights the importance of defining the appropriate functional unit when addressing relationships of performance and morphology.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Suturas Craneales/fisiología , Mandíbula/anatomía & histología , Mandíbula/fisiología , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Modelos Anatómicos , Modelos Biológicos , Análisis Multivariante
6.
J Morphol ; 280(10): 1548-1570, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31385619

RESUMEN

Living gars are a small clade of seven species that occupy an important position on the actinopterygian phylogenetic tree as members of Holostei, sister-group to teleosts, and exhibit many plesiomorphic traits used to interpret and reconstruct early osteichthyan feeding mechanisms. Previous studies of gar feeding kinematics have focused on the ram-based, lateral-snapping mode of prey capture found in the narrow-snouted Lepisosteus genus, whereas this study focuses on a member of the broad-snouted Atractosteus sister-genus, the alligator gar (Atractosteus spatula, Lacépède, 1803). High-speed videography reveals that the feeding system of alligator gars is capable of rapid expansion from anterior to posterior, timed in a way to generate suction, counteract the effects of a bow-wave during ram-feeding, and direct a unidirectional flow of water through the feeding system. Reconstructed contrast-enhanced µCT-based cranial anatomy and three-dimensional modeling of linkage mechanics show that a lateral-sliding palatoquadrate, flexible intrasuspensorial joint, pivoting interhyal, and retractable pectoral girdle increase the range of motion and expansive capabilities of the alligator gar feeding mechanism. Reconstructions of muscular anatomy, inferences from in vivo kinematics, and in situ manipulations show that input from the hyoid constrictors and hypaxials play an important role in decoupling and modulating the dual roles of the sternohyoideus during feeding: hyoid retraction (jaw opening) and hyoid rotation (pharyngeal expansion). The alligator gar possesses an intricate feeding mechanism, capable of precise control with plesiomorphic muscles that represent one of the many ways the ancestral osteichthyan feeding mechanism has been modified for prey capture.


Asunto(s)
Ingestión de Alimentos , Peces/anatomía & histología , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Peces/fisiología , Hueso Hioides/anatomía & histología , Hueso Hioides/fisiología , Maxilares/anatomía & histología , Maxilares/fisiología , Músculos/anatomía & histología , Músculos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA