Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Immunogenet ; 48(2): 135-144, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33426788

RESUMEN

The development of donor-specific antibodies (DSAs) is a major complication in transplantation, which is associated with inferior graft survival, impaired quality of life, and increased healthcare costs. DSA develop upon recognition of nonself HLA by the recipient's immune system. HLA molecules contain epitopes, which are the surface regions of HLA molecules recognized by antibodies. HLAMatchmaker is an algorithm for assessing donor:recipient HLA compatibility at the level of structurally defined HLA targets called eplets. The consideration of eplets, rather than the whole HLA molecule, could offer some advantages when classifying the immune risk associated with particular donor:recipient pairs. Assessing compatibility at the level of HLA eplets could decrease misclassification of post-transplant immune risk by improving specificity, when antibodies are confirmed to be directed against donor eplets missing from the recipient's repertoire of eplets. Consideration of eplets may also increase the sensitivity of immune risk assessment, when identifying mismatched eplets that could give rise to new, not previously detected, donor-specific antibodies post-transplant. Eplet matching can serve as a rational strategy for immune risk mitigation. Herein, we review the evolution of HLA (in) compatibility assessment for organ allocation. We outline challenges in the implementation of eplet-based donor:recipient matching, including unavailability of allele-level donor genotypes for 11 HLA loci at the time of organ allocation and difficulty in assessing the hierarchy of immune risk associated with particular HLA eplet mismatches. Opportunities to address some of the current shortcomings of donor genotyping and HLAMatchmaker are also discussed. While there is a demonstrated benefit in the application of HLAMatchmaker for donor: recipient HLA (in)compatibility assessment, evolving long-read genotyping methods, compilation of large data sets with allele-level genotypes, and standardization of methods to verify eplets as determinants of immune-mediated injuries are required before HLA eplet matching is implemented in organ allocation to improve upon transplant outcomes.


Asunto(s)
Epítopos/inmunología , Antígenos HLA/inmunología , Histocompatibilidad , Programas Informáticos , Algoritmos , Alelos , Estudios de Factibilidad , Genotipo , Rechazo de Injerto/prevención & control , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Memoria Inmunológica , Isoanticuerpos/inmunología , Donantes de Tejidos , Receptores de Trasplantes
2.
Cancer Immunol Immunother ; 69(9): 1767-1779, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32342128

RESUMEN

Targeted immunotherapy has improved the outcome of patients with high-risk neuroblastoma (NB). However, immune escape of tumor cells still occurs and about 40% of NB patients relapse and die from their disease. We previously showed that natural killer (NK) cell stimulation by Toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDC) increases the efficacy of dinutuximab-based immunotherapy against NB cell lines via the TRAIL death-receptor pathway. With the aim to translate our findings into a novel adoptive therapy of TLR-activated pDC, we investigated the pDC/NK cell axis in NB patients undergoing dinutuximab-based immunotherapy. We show that pDC counts were low at the beginning of immunotherapy but reached normal levels over time. Blood NK cell counts were normal in all patients, although a high proportion of CD56bright CD16low/- cells was observed. The stimulation of patient's blood cells with a TLR9 ligand led to IFN-α production by pDC, and TRAIL expression on NK cell surface. Patient's NK cells expressed high levels of CD69 and TRAIL after stimulation with activated pDC. Both CD56bright CD16low/- and CD56dim CD16+ NK cells degranulated against autologous target cells in the presence of dinutuximab. Importantly, pDC-induced NK cell activation increased the dinutuximab mediated autologous killing of patient-derived NB cells. Altogether, our study demonstrates that TLR-activated pDC strongly increase the cytotoxic functions of NK cells in high-risk NB patients undergoing immunotherapy. These results, therefore, support pDC adoptive immunotherapy as a novel approach to decrease the risk of relapse in patients with high-risk NB.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/inmunología , Adolescente , Anticuerpos Monoclonales/inmunología , Presentación de Antígeno/inmunología , Niño , Preescolar , Citotoxicidad Inmunológica/inmunología , Femenino , Humanos , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Masculino , Recurrencia Local de Neoplasia/inmunología , Receptores Toll-Like/inmunología
3.
Cytotherapy ; 16(6): 845-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24529554

RESUMEN

BACKGROUND AIMS: Cytokine-induced killer (CIK) cells ex vivo-expanded from cord blood (CB) or peripheral blood (PB) have been shown to be cytotoxic against autologous and allogeneic tumor cells. We have previously shown that CD56(+) CIK cells (CD3(+)CD56(+) and CD3(-)CD56(+)) are capable of killing precursor B-cell acute lymphoblastic leukemia (B-ALL) cell lines. However, the lytic pathways used by CD56(+) PB and CB-CIK cells to kill B-ALL cell lines have not been studied. METHODS: CB and PB-CIK cells were differentiated. CD56(+) CB- and PB-CIK cells were compared for expression of different phenotypic markers and for the lytic pathways used to kill B-ALL cell lines. RESULTS: We found that cytotoxic granule proteins were expressed at higher levels in CD56(+) PB-CIK than in CD56(+) CB-CIK cells. However, CD56(+) CB-CIK cells expressed more tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) compared with CD56(+) PB-CIK cells. We observed that CD56(+) CB-CIK cells used both the NKG2D and TRAIL cytotoxic pathways and were more effective at killing REH cells than CD56(+) PB-CIK cells that used only the NKG2D pathway. In contrast, CD56(+) PB-CIK cells used both NKG2D and TRAIL pathways to kill NALM6 cells, whereas CD56(+) CB-CIK cells used only the NKG2D pathway. CONCLUSIONS: Our results suggest that both the source of CIK and the type of B-ALL cell line have an impact on the intensity of the cytolytic activity and on the pathway used. These findings may have clinical implications with respect to optimizing therapeutic efficacy, which may be dependent on the source of the CIK cells and on the target tumor cells.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Asesinas Inducidas por Citocinas/trasplante , Sangre Fetal/citología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Línea Celular , Citotoxicidad Inmunológica , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Trasplante de Células Madre de Sangre Periférica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
4.
HLA ; 102(6): 671-689, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37439270

RESUMEN

As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.


Asunto(s)
Frecuencia de los Genes , Humanos , Quebec , Alelos , Haplotipos , Canadá , Sistema de Registros , Cadenas HLA-DRB1/genética
5.
Front Immunol ; 14: 1231916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675109

RESUMEN

Introduction: Natural Killer (NK) cells hold the potential to shift cell therapy from a complex autologous option to a universal off-the-shelf one. Although NK cells have demonstrated efficacy and safety in the treatment of leukemia, the limited efficacy of NK cell-based immunotherapies against solid tumors still represents a major hurdle. In the immunosuppressive tumor microenvironment (TME), inhibitory interactions between cancer and immune cells impair antitumoral immunity. KLRC1 gene encodes the NK cell inhibitory receptor NKG2A, which is a potent NK cell immune checkpoint. NKG2A specifically binds HLA-E, a non-classical HLA class I molecule frequently overexpressed in tumors, leading to the transmission of inhibitory signals that strongly impair NK cell function. Methods: To restore NK cell cytotoxicity against HLA-E+ tumors, we have targeted the NKG2A/HLA-E immune checkpoint by using a CRISPR-mediated KLRC1 gene editing. Results: KLRC1 knockout resulted in a reduction of 81% of NKG2A+ cell frequency in ex vivo expanded human NK cells post-cell sorting. In vitro, the overexpression of HLA-E by tumor cells significantly inhibited wild-type (WT) NK cell cytotoxicity with p-values ranging from 0.0071 to 0.0473 depending on tumor cell lines. In contrast, KLRC1 KO NK cells exhibited significantly higher cytotoxicity when compared to WT NK cells against four different HLA-E+ solid tumor cell lines, with p-values ranging from<0.0001 to 0.0154. Interestingly, a proportion of 43.5% to 60.2% of NKG2A- NK cells within the edited NK cell population was sufficient to reverse at its maximum the HLA-E-mediated inhibition of NK cell cytotoxicity. The expression of the activating receptor NKG2C was increased in KLRC1 KO NK cells and contributed to the improved NK cell cytotoxicity against HLA-E+ tumors. In vivo, the adoptive transfer of human KLRC1 KO NK cells significantly delayed tumor progression and increased survival in a xenogeneic mouse model of HLA-E+ metastatic breast cancer, as compared to WT NK cells (p = 0.0015). Conclusions: Our results demonstrate that KLRC1 knockout is an effective strategy to improve NK cell antitumor activity against HLA-E+ tumors and could be applied in the development of NK cell therapy for solid tumors.


Asunto(s)
Células Asesinas Naturales , Leucemia , Humanos , Animales , Ratones , Receptores de Células Asesinas Naturales , Transporte de Proteínas , Microambiente Tumoral , Antígenos HLA-E
6.
Future Virol ; 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36844192

RESUMEN

Aim: More data is required regarding the association between HLA allele and red blood cell (RBC) antigen expression in regard to SARS-CoV-2 infection and COVID-19 susceptibility. Methods: ABO, RhD, 37 other RBC antigens and HLA-A, B, C, DRB1, DQB1 and DPB1 were determined using high throughput platforms in 90 Caucasian convalescent plasma donors. Results: The AB group was significantly increased (1.5×, p = 0.018) and some HLA alleles were found to be significantly overrepresented (HLA-B*44:02, C*05:01, DPB1*04:01, DRB1*04:01 and DRB1*07:01) or underrepresented (A*01:01, B51:01 and DPB1*04:02) in convalescent individuals compared with the local bone marrow registry population. Conclusion: Our study of infection-susceptible but non-hospitalized Caucasian COVID-19 patients contributes to the global understanding of host genetic factors associated with SARS-CoV-2 infection and severity.

7.
Sci Rep ; 13(1): 16443, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777587

RESUMEN

Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.


Asunto(s)
Disulfiram , Neuroblastoma , Animales , Niño , Humanos , Ratones , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Línea Celular Tumoral , Disulfiram/farmacología , Disulfiram/uso terapéutico , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Emulsiones/uso terapéutico , Histona Acetiltransferasas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
8.
Stem Cell Reports ; 18(2): 597-612, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36736326

RESUMEN

Humanization of mice with functional T cells currently relies on co-implantation of hematopoietic stem cells from fetal liver and autologous fetal thymic tissue (so-called BLT mouse model). Here, we show that NOD/SCID/IL2rγnull mice humanized with cord blood- derived CD34+ cells and implanted with allogeneic pediatric thymic tissues excised during cardiac surgeries (CCST) represent an alternative to BLT mice. CCST mice displayed a strong immune reconstitution, with functional T cells originating from CD34+ progenitor cells. They were equally susceptible to mucosal or intraperitoneal HIV infection and had significantly higher HIV-specific T cell responses. Antiretroviral therapy (ART) robustly suppressed viremia and reduced the frequencies of cells carrying integrated HIV DNA. As in BLT mice, we observed a complete viral rebound following ART interruption, suggesting the presence of HIV reservoirs. In conclusion, CCST mice represent a practical alternative to BLT mice, broadening the use of humanized mice for research.


Asunto(s)
Infecciones por VIH , Humanos , Ratones , Animales , Niño , Ratones SCID , Ratones Endogámicos NOD , Linfocitos T , Timo , Modelos Animales de Enfermedad , Ratones Noqueados
9.
Front Immunol ; 13: 1067075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505483

RESUMEN

Introduction: Kidney transplantation is the optimal treatment in end-stage kidney disease, but de-novo donor specific antibody development continues to negatively impact patients undergoing kidney transplantation. One of the recent advances in solid organ transplantation has been the definition of molecular mismatching between donors and recipients' Human Leukocyte Antigens (HLA). While not fully integrated in standard clinical care, cumulative molecular mismatch at the level of eplets (EMM) as well as the PIRCHE-II score have shown promise in predicting transplant outcomes. In this manuscript, we sought to study whether certain T-cell molecular mismatches (TcEMM) were highly predictive of death-censored graft failure (DCGF). Methods: We studied a retrospective cohort of kidney donor:recipient pairs from the Scientific Registry of Transplant Recipients (2000-2015). Allele level HLA-A, B, C, DRB1 and DQB1 types were imputed from serologic types using the NMDP algorithm. TcEMMs were then estimated using the PIRCHE-II algorithm. Multivariable Accelerated Failure Time (AFT) models assessed the association between each TcEMM and DCGF. To discriminate between TcEMMs most predictive of DCGF, we fit multivariable Lasso penalized regression models. We identified co-expressed TcEMMs using weighted correlation network analysis (WGCNA). Finally, we conducted sensitivity analyses to address PIRCHE and IMGT/HLA version updates. Results: A total of 118,309 donor:recipient pairs meeting the eligibility criteria were studied. When applying the PIRCHE-II algorithm, we identified 1,935 distinct TcEMMs at the population level. A total of 218 of the observed TcEMM were independently associated with DCGF by AFT models. The Lasso penalized regression model with post selection inference identified a smaller subset of 86 TcEMMs (56 and 30 TcEMM derived from HLA Class I and II, respectively) to be highly predictive of DCGF. Of the observed TcEMM, 38.14% appeared as profiles of highly co-expressed TcEMMs. In addition, sensitivity analyses identified that the selected TcEMM were congruent across IMGT/HLA versions. Conclusion: In this study, we identified subsets of TcEMMs highly predictive of DCGF and profiles of co-expressed mismatches. Experimental verification of these TcEMMs determining immune responses and how they may interact with EMM as predictors of transplant outcomes would justify their consideration in organ allocation schemes and for modifying immunosuppression regimens.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Linfocitos T , Antígenos HLA/genética , Complicaciones Posoperatorias
10.
Front Immunol ; 10: 2873, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921138

RESUMEN

NK-cell resistance to transduction is a major technical hurdle for developing NK-cell immunotherapy. By using Baboon envelope pseudotyped lentiviral vectors (BaEV-LVs) encoding eGFP, we obtained a transduction rate of 23.0 ± 6.6% (mean ± SD) in freshly-isolated human NK-cells (FI-NK) and 83.4 ± 10.1% (mean ± SD) in NK-cells obtained from the NK-cell Activation and Expansion System (NKAES), with a sustained transgene expression for at least 21 days. BaEV-LVs outperformed Vesicular Stomatitis Virus type-G (VSV-G)-, RD114- and Measles Virus (MV)- pseudotyped LVs (p < 0.0001). mRNA expression of both BaEV receptors, ASCT1 and ASCT2, was detected in FI-NK and NKAES, with higher expression in NKAES. Transduction with BaEV-LVs encoding for CAR-CD22 resulted in robust CAR-expression on 38.3 ± 23.8% (mean ± SD) of NKAES cells, leading to specific killing of NK-resistant pre-B-ALL-RS4;11 cell line. Using a larger vector encoding a dual CD19/CD22-CAR, we were able to transduce and re-expand dual-CAR-expressing NKAES, even with lower viral titer. These dual-CAR-NK efficiently killed both CD19KO- and CD22KO-RS4;11 cells. Our results suggest that BaEV-LVs may efficiently enable NK-cell biological studies and translation of NK-cell-based immunotherapy to the clinic.


Asunto(s)
Expresión Génica , Vectores Genéticos , Células Asesinas Naturales/metabolismo , Lentivirus/genética , Transducción Genética , Animales , Humanos , Células Asesinas Naturales/citología , Papio
11.
Oncotarget ; 7(21): 30193-210, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27070086

RESUMEN

Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation.


Asunto(s)
Diferenciación Celular/genética , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Interleucina-4/farmacología , Macrófagos/citología , Ratones Endogámicos C57BL , Ratones SCID , Monocitos/citología , Monocitos/metabolismo , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA