Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 71(1): 117-128.e3, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008317

RESUMEN

To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Activación Enzimática , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasa Tipo Polo 1
2.
Nucleic Acids Res ; 50(11): 6235-6250, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670662

RESUMEN

The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Serina-Treonina Quinasas , ARN , Animales , ADN/genética , Estudio de Asociación del Genoma Completo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , ARN Helicasas/genética
3.
PLoS Genet ; 9(3): e1003339, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505385

RESUMEN

Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona , Reparación del ADN , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/efectos de la radiación , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Inestabilidad Genómica/genética , Células Germinativas/metabolismo , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de la radiación , Humanos , Mutación , Tolerancia a Radiación/genética , Radiación Ionizante , Rayos Ultravioleta
4.
PLoS Genet ; 9(2): e1003276, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408909

RESUMEN

Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Recombinación Homóloga/genética , Meiosis/genética , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica/genética , Intercambio Genético , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Células Germinativas/metabolismo , Autoantígeno Ku , Fase Paquiteno/genética
5.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780468

RESUMEN

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Pteridinas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Pteridinas/farmacología , Pteridinas/química , Pteridinas/síntesis química , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Quinasa Idelta de la Caseína/metabolismo , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/metabolismo , Línea Celular Tumoral
6.
Cell Death Differ ; 30(7): 1666-1678, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142656

RESUMEN

Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.


Asunto(s)
Disulfiram , Neoplasias , Animales , Humanos , Línea Celular Tumoral , Disulfiram/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/metabolismo
7.
Chromosoma ; 120(1): 1-21, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21052706

RESUMEN

Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.


Asunto(s)
Caenorhabditis elegans/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Cadena Simple/metabolismo , Evolución Molecular , Animales , Caenorhabditis elegans/genética , Ciclo Celular , Deleción Cromosómica , ADN de Cadena Simple/genética
8.
Curr Biol ; 16(19): 1950-5, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16934469

RESUMEN

DNA-damage checkpoints maintain genomic integrity by mediating a cell-cycle delay in response to genotoxic stress or stalled replication forks. In response to damage, the checkpoint kinase ATR phosphorylates and activates its effector kinase Chk1 in a process that critically depends on Claspin . However, it is not known how exactly this kinase cascade is silenced. Here we demonstrate that the abundance of Claspin is regulated through proteasomal degradation. In response to DNA damage, Claspin is transiently stabilized, and its expression depends on Chk1 kinase activity. In addition, we show that Claspin is degraded upon mitotic entry, a process that depends on the beta-TrCP-SCF ubiquitin ligase and Polo-like kinase-1 (Plk1). We demonstrate that Claspin interacts with both beta-TrCP and Plk1 and that inactivation of these components or the beta-TrCP recognition motif in Claspin prevents its mitotic degradation. Interestingly, expression of a nondegradable Claspin mutant inhibits recovery from a DNA-damage-induced checkpoint arrest. Thus, we conclude that Claspin levels are tightly regulated, both during unperturbed cell cycles and after DNA damage. Moreover, our data demonstrate that the degradation of Claspin at the onset of mitosis is an essential step for the recovery of a cell from a DNA-damage-induced cell-cycle arrest.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Humanos , Mutación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Quinasa Tipo Polo 1
9.
J Cell Biol ; 218(12): 3892-3902, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31712253

RESUMEN

The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.


Asunto(s)
Puntos de Control del Ciclo Celular , Replicación del ADN , Mitosis , Animales , Proteínas de Ciclo Celular/metabolismo , División Celular , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Activación Enzimática , Humanos , Cinética , Ratones , Transducción de Señal
10.
Nat Commun ; 6: 8909, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563448

RESUMEN

Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Replicación del ADN , G-Cuádruplex , Mitosis , Mutagénesis , Animales , Proliferación Celular , Roturas del ADN de Doble Cadena
11.
Genetics ; 195(3): 1187-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23979586

RESUMEN

The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Mutagénesis Sitio-Dirigida , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN de Helmintos/genética , Marcación de Gen , Genoma de los Helmintos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA