Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Euro Surveill ; 24(5)2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30722811

RESUMEN

BackgroundCrimean-Congo haemorrhagic fever virus (CCHFV) is considered an emerging infectious disease threat in the European Union. Since 2000, the incidence and geographic range of confirmed CCHF cases have markedly increased, following changes in the distribution of its main vector, Hyalomma ticks.AimsTo review scientific literature and collect experts' opinion to analyse relevant aspects of the laboratory management of human CCHF cases and any exposed contacts, as well as identify areas for advancement of international collaborative preparedness and laboratory response plans.MethodsWe conducted a literature review on CCHF molecular diagnostics through an online search. Further, we obtained expert opinions on the key laboratory aspects of CCHF diagnosis. Consulted experts were members of two European projects, EMERGE (Efficient response to highly dangerous and emerging pathogens at EU level) and EVD-LabNet (Emerging Viral Diseases-Expert Laboratory Network).ResultsConsensus was reached on relevant and controversial aspects of CCHF disease with implications for laboratory management of human CCHF cases, including biosafety, diagnostic algorithm and advice to improve lab capabilities. Knowledge on the diffusion of CCHF can be obtained by promoting syndromic approach to infectious diseases diagnosis and by including CCHFV infection in the diagnostic algorithm of severe fevers of unknown origin.ConclusionNo effective vaccine and/or therapeutics are available at present so outbreak response relies on rapid identification and appropriate infection control measures. Frontline hospitals and reference laboratories have a crucial role in the response to a CCHF outbreak, which should integrate laboratory, clinical and public health responses.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , ADN Viral/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/transmisión , Ensayos de Aptitud de Laboratorios/normas , Animales , Enfermedades Transmisibles Emergentes/epidemiología , ADN Viral/análisis , Brotes de Enfermedades/prevención & control , Ensayo de Inmunoadsorción Enzimática , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/virología , Humanos , Inmunoglobulina G/sangre , Ixodidae , Laboratorios , Ensayos de Aptitud de Laboratorios/métodos , Análisis de Secuencia de ARN , Garrapatas/virología
2.
Travel Med Infect Dis ; 11(4): 238-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23518234

RESUMEN

BACKGROUND: Actions at European Union level for International Health Regulations (IHR) 2005 implementation and maritime transport were focused on two European projects implemented between 2006 and 2011. METHOD: Situation analysis and needs assessment were conducted, a Manual including European standards and best practice and training material was developed and training courses were delivered. Ship-to-port and port-to-port communication web-based network and database for recording IHR Ship Sanitation Certificates (SSC) were established. RESULTS: Fifty pilot inspections based on the Manual were conducted on passenger ships. A total of 393 corrective actions were implemented according to recommendations given to Captains during pilot inspections. The web-based communication network of competent authorities at ports in EU Member States was used to manage 13 events/outbreaks (dengue fever, Legionnaires' disease, gastroenteritis, meningitis, varicella and measles). The European information database system was used for producing and recording 1018 IHR SSC by 156 inspectors in 6 countries in accordance with the WHO Handbook for inspection of ships and issuance of SSC. CONCLUSIONS: Implementation of corrective actions after pilot inspections increased the level of compliance with the hygiene standards in passenger ships sailing within the EU waters and improved hygiene conditions. The communication tool contributed to improvement of outbreak identification and better management through rapid sharing of public health information, allowing a more timely and coordinated response. After the implementation of actions on passenger ships, the European Commission co-funded a Joint action that will expand the activities to all types of ships and chemical, biological and radio-nuclear threats (deliberate acts/accidental).


Asunto(s)
Control de Enfermedades Transmisibles/organización & administración , Brotes de Enfermedades/prevención & control , Higiene/normas , Saneamiento/normas , Navíos/normas , Control de Enfermedades Transmisibles/métodos , Comunicación , Unión Europea , Salud Global , Humanos , Capacitación en Servicio , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA