Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Angew Chem Int Ed Engl ; 63(31): e202405120, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743001

RESUMEN

The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.


Asunto(s)
Acetilcoenzima A , Dióxido de Carbono , Oxidación-Reducción , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Biocatálisis , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Modelos Moleculares
2.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36799129

RESUMEN

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Asunto(s)
Neoplasias Colorrectales , Pirazoles , Humanos , Pirazoles/química , Pirimidinas/farmacología , Pirimidinas/química , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 116(40): 20124-20134, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527263

RESUMEN

A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation, and increases parasitemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multivariant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1), which is bound by 2 distinct groups of PfEMP1, A-type and B or C (BC)-type. Here, we present the structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an A-type PfEMP1 bound to ICAM-1 shows that the 2 complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BC-type PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighboring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion.


Asunto(s)
Eritrocitos/metabolismo , Eritrocitos/parasitología , Molécula 1 de Adhesión Intercelular/química , Molécula 1 de Adhesión Intercelular/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Adhesión Celular , Humanos , Malaria Falciparum/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
4.
Cell Microbiol ; 18(3): 340-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26332529

RESUMEN

Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.


Asunto(s)
Virus de la Enfermedad de Borna/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Glicoproteínas de Membrana/metabolismo , Animales , Astrocitos/virología , Benzamidinas/farmacología , Virus de la Enfermedad de Borna/metabolismo , Encéfalo/citología , Encéfalo/virología , Fusión Celular , Células Cultivadas , Chlorocebus aethiops , Perros , Furina/antagonistas & inhibidores , Células de Riñón Canino Madin Darby/virología , Oligopéptidos/farmacología , Ratas Endogámicas Lew , Células Vero/virología
5.
J Immunol ; 195(7): 3273-83, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320251

RESUMEN

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLß3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLß3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLß3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLß3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLß3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLß3_D4 has previously been shown to contain the ICAM-1 binding site of DBLß domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Adhesión Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/parasitología , Epítopos/inmunología , Membrana Eritrocítica/inmunología , Eritrocitos/parasitología , Hibridomas , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
6.
Arch Virol ; 158(9): 1895-905, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23553456

RESUMEN

The Lassa virus nucleoprotein (NP) is a multifunctional protein that plays an essential role in many aspects of the viral life cycle, including RNA encapsidation, viral transcription and replication, recruitment of ribonucleoprotein complexes to viral budding sites, and inhibition of the host cell interferon response. While it is known that NP is capable of forming oligomers, both the oligomeric state of NP in mammalian cells and the significance of NP oligomerization for its various functions remain unclear. Here, we demonstrate that Lassa virus NP solely forms trimers upon expression in mammalian cells. Using a minigenome assay we show that mutants that are not able to form stable trimers are no longer functional during transcription and/or replication of the minigenome, indicating that NP trimerization is essential for transcription and/or replication of the viral genome. However, mutations leading to destabilization of the NP trimer did not impact the incorporation of NP into virus-like particles or its ability to suppress interferon-induced gene expression, two important functions of arenavirus NP.


Asunto(s)
Arenavirus/metabolismo , Nucleoproteínas/metabolismo , Secuencia de Aminoácidos , Arenavirus/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Virus Lassa/genética , Virus Lassa/metabolismo , Datos de Secuencia Molecular , Nucleoproteínas/química , Nucleoproteínas/genética , Multimerización de Proteína , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
7.
Methods Mol Biol ; 2470: 467-482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881367

RESUMEN

A detailed understanding of the interaction between the highly variant Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) and their human binding partners is essential to explain their roles in disease development in malaria, as well as to understand how antibodies can inhibit these interactions and how the parasite manages to evade such an immune response. This chapter focuses on using surface plasmon resonance (SPR) as a reproducible, high-throughput method to quantitatively characterize these interactions. We describe how to utilize protein A or A/G and streptavidin for protein immobilization on SPR sensor chips and provide instructions on how to biotinylate proteins for this purpose and how to use SPR for binding competition assays. Since these experiments rely on recombinant proteins, we also present a method to verify their structural integrity using circular dichroism spectroscopy.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Proteínas Portadoras/metabolismo , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
8.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 238-247, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102889

RESUMEN

Protein-mediated redox reactions play a critical role in many biological processes and often occur at centres that contain metal ions as cofactors. In order to understand the exact mechanisms behind these reactions it is important to not only characterize the three-dimensional structures of these proteins and their cofactors, but also to identify the oxidation states of the cofactors involved and to correlate this knowledge with structural information. The only suitable approach for this based on crystallographic measurements is spatially resolved anomalous dispersion (SpReAD) refinement, a method that has been used previously to determine the redox states of metals in iron-sulfur cluster-containing proteins. In this article, the feasibility of this approach for small, non-iron-sulfur redox centres is demonstrated by employing SpReAD analysis to characterize Sulfolobus tokodaii sulerythrin, a ruberythrin-like protein that contains a binuclear metal centre. Differences in oxidation states between the individual iron ions of the binuclear metal centre are revealed in sulerythrin crystals treated with H2O2. Furthermore, data collection at high X-ray doses leads to photoreduction of this metal centre, showing that careful control of the total absorbed dose is a prerequisite for successfully determining the oxidation state through SpReAD analysis.


Asunto(s)
Proteínas Hierro-Azufre , Metaloproteínas , Cristalografía por Rayos X , Peróxido de Hidrógeno , Metaloproteínas/química , Oxidación-Reducción
9.
Nat Commun ; 13(1): 5603, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153317

RESUMEN

An effective malaria vaccine remains a global health priority and vaccine immunogens which prevent transmission of the parasite will have important roles in multi-component vaccines. One of the most promising candidates for inclusion in a transmission-blocking malaria vaccine is the gamete surface protein Pfs48/45, which is essential for development of the parasite in the mosquito midgut. Indeed, antibodies which bind Pfs48/45 can prevent transmission if ingested with the parasite as part of the mosquito bloodmeal. Here we present the structure of full-length Pfs48/45, showing its three domains to form a dynamic, planar, triangular arrangement. We reveal where transmission-blocking and non-blocking antibodies bind on Pfs48/45. Finally, we demonstrate that antibodies which bind across this molecule can be transmission-blocking. These studies will guide the development of future Pfs48/45-based vaccine immunogens.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Anticuerpos Bloqueadores , Anticuerpos Antiprotozoarios , Malaria Falciparum/parasitología , Proteínas de la Membrana , Plasmodium falciparum , Proteínas Protozoarias/química
10.
J Virol ; 84(2): 983-92, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19889753

RESUMEN

Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.


Asunto(s)
Colesterol/farmacología , Glicoproteínas , Virus Lassa/metabolismo , Virus Lassa/fisiología , Proteínas del Envoltorio Viral , Replicación Viral , Animales , Línea Celular , Centrifugación por Gradiente de Densidad , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Reactivos de Enlaces Cruzados , Dimerización , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Virus Lassa/efectos de los fármacos , Virus Lassa/patogenicidad , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
11.
Sci Rep ; 8(1): 3282, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459671

RESUMEN

The Plasmodium falciparum variant surface antigen PfEMP1 expressed on the surface of infected erythrocytes is thought to play a major role in the pathology of severe malaria. As the sequence pool of the var genes encoding PfEMP1 expands there are opportunities, despite the high degree of sequence diversity demonstrated by this gene family, to reconstruct full-length var genes from small sequence tags generated from patient isolates. To test whether this is possible we have used a set of recently laboratory adapted ICAM-1-binding parasite isolates to generate sequence tags and, from these, to identify the full-length PfEMP1 being expressed by them. In a subset of the strains available we were able to produce validated, full-length var gene sequences and use these to conduct biophysical analyses of the ICAM-1 binding regions.


Asunto(s)
Molécula 1 de Adhesión Intercelular/genética , Malaria Falciparum/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos/genética , Animales , Antígenos de Superficie/genética , Simulación por Computador , Eritrocitos/química , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Unión Proteica , Proteínas Protozoarias/química , Alineación de Secuencia
12.
Nat Commun ; 9(1): 3822, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237518

RESUMEN

The quest to develop an effective malaria vaccine remains a major priority in the fight against global infectious disease. An approach with great potential is a transmission-blocking vaccine which induces antibodies that prevent establishment of a productive infection in mosquitos that feed on infected humans, thereby stopping the transmission cycle. One of the most promising targets for such a vaccine is the gamete surface protein, Pfs48/45. Here we establish a system for production of full-length Pfs48/45 and use this to raise a panel of monoclonal antibodies. We map the binding regions of these antibodies on Pfs48/45 and correlate the location of their epitopes with their transmission-blocking activity. Finally, we present the structure of the C-terminal domain of Pfs48/45 bound to the most potent transmission-blocking antibody, and provide key molecular information for future structure-guided immunogen design.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/transmisión , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/inmunología , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Epítopos/química , Epítopos/inmunología , Inmunización , Ratones , Dominios Proteicos , Mapeo de Interacción de Proteínas
13.
Emerg Top Life Sci ; 1(6): 539-545, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33525843

RESUMEN

Human infective parasites, such as those that cause malaria, are highly adapted to evade clearance by the immune system. In situations where they must maintain prolonged interactions with molecules of their host, they often use parasite surface protein families. These families are highly diverse to prevent immune recognition, and yet, to promote parasite survival, their members must retain the ability to interact with specific human receptors. One of the best understood of the parasite surface protein families is the PfEMP1 proteins of Plasmodium falciparum. These molecules cause infected erythrocytes to adhere to human receptors found on blood vessel and tissue surfaces. This protects the parasite within from clearance by the spleen and also causes symptoms of severe malaria. The PfEMP1 are exposed to the immune system during infection and are therefore excellent vaccine candidates for use in an approach to prevent severe disease. A key question, however, is whether their extensive diversity precludes them from forming components of the malaria vaccines of the future?

14.
Cell Host Microbe ; 21(3): 403-414, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28279348

RESUMEN

Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria.


Asunto(s)
Adhesión Celular , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Factores de Virulencia/metabolismo , Antígenos CD/metabolismo , Biología Computacional , Cristalografía por Rayos X , Receptor de Proteína C Endotelial , Genoma de Protozoos , Molécula 1 de Adhesión Intercelular/metabolismo , Plasmodium falciparum/fisiología , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Receptores de Superficie Celular/metabolismo , Dispersión del Ángulo Pequeño , Análisis de Secuencia de ADN , Resonancia por Plasmón de Superficie , Factores de Virulencia/química , Factores de Virulencia/genética
15.
Viruses ; 4(11): 2973-3011, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23202512

RESUMEN

Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi­segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle.


Asunto(s)
Arenavirus/fisiología , Proteínas Virales/metabolismo , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Arenaviridae/tratamiento farmacológico , Infecciones por Arenaviridae/virología , Genoma Viral , Humanos , Dominios RING Finger , Interferencia de ARN , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/genética , Virión/ultraestructura , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA