Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771873

RESUMEN

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Asunto(s)
Envejecimiento , Toma de Decisiones , Locus Coeruleus , Imagen por Resonancia Magnética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Humanos , Toma de Decisiones/fisiología , Anciano , Masculino , Femenino , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Recompensa
2.
Magn Reson Med ; 92(4): 1540-1555, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38703017

RESUMEN

PURPOSE: Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed-sensing MP2RAGE (csMP2RAGE) T1 mapping for accelerating MTsat imaging. METHODS: VFA, MP2RAGE, and csMP2RAGE were compared against inversion-recovery T1 in an aqueous phantom at 3 T. The same 1-mm VFA, MP2RAGE, and csMP2RAGE protocols were acquired in 4 healthy subjects to compare T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. RESULTS: The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. At these scan times, all approaches provided strong repeatability and accurate T1 times (< 5% difference) in the phantom, but T1 accuracy was more impacted by T2 for VFA than for MP2RAGE. In vivo, VFA estimated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the differences in the T1 measured using VFA, MP2RAGE, and inversion recovery could be explained by the magnetization-transfer effects. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 2.3% for T1 mapping and 7.8% for MTsat imaging. CONCLUSIONS: We demonstrated that MP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Adulto , Masculino , Reproducibilidad de los Resultados , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Mapeo Encefálico/métodos , Simulación por Computador , Adulto Joven , Voluntarios Sanos
3.
Magn Reson Med ; 90(5): 1762-1775, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37332194

RESUMEN

PURPOSE: Imaging biomarkers with increased myelin specificity are needed to better understand the complex progression of neurological disorders. Inhomogeneous magnetization transfer (ihMT) imaging is an emergent technique that has a high degree of specificity for myelin content but suffers from low signal to-noise ratio (SNR). This study used simulations to determine optimal sequence parameters for ihMT imaging for use in high-resolution cortical mapping. METHODS: MT-weighted cortical image intensity and ihMT SNR were simulated using modified Bloch equations for a range of sequence parameters. The acquisition time was limited to 4.5 min/volume. A custom MT-weighted RAGE sequence with center-out k-space encoding was used to enhance SNR at 3 T. Pulsed MT imaging was studied over a range of saturation parameters, and the impact of the turbo factor on the effective ihMT resolution was investigated. 1 mm isotropic ihMTsat maps were generated in 25 healthy adults. RESULTS: Greater SNR was observed for larger number of bursts consisting of 6-8 saturation pulses each, combined with a high readout turbo factor. However, that protocol suffered from a point spread function that was more than twice the nominal resolution. For high-resolution cortical imaging, we selected a protocol with a higher effective resolution at the cost of a lower SNR. We present the first group-average ihMTsat whole-brain map at 1 mm isotropic resolution. CONCLUSION: This study presents the impact of saturation and excitation parameters on ihMTsat SNR and resolution. We demonstrate the feasibility of high-resolution cortical myelin imaging using ihMTsat in less than 20 min.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Vaina de Mielina , Relación Señal-Ruido , Biomarcadores
4.
Neuroimage ; 263: 119612, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070839

RESUMEN

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.


Asunto(s)
Conectoma , Procesamiento Automatizado de Datos , Neuroimagen , Programas Informáticos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos/normas , Procesamiento Automatizado de Datos/métodos , Procesamiento Automatizado de Datos/normas
5.
Mult Scler ; 28(13): 2027-2037, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35903888

RESUMEN

BACKGROUND: The use of advanced magnetic resonance imaging (MRI) techniques in MS research has led to new insights in lesion evolution and disease outcomes. It has not yet been determined if, or how, pre-lesional abnormalities in normal-appearing white matter (NAWM) relate to the long-term evolution of new lesions. OBJECTIVE: To investigate the relationship between abnormalities in MRI measures of axonal and myelin volume fractions (AVF and MVF) in NAWM preceding development of black-hole (BH) and non-BH lesions in people with MS. METHODS: We obtained magnetization transfer and diffusion MRI at 6-month intervals in patients with MS to estimate MVF and AVF during lesion evolution. Lesions were classified as either BH or non-BH on the final imaging visit using T1 maps. RESULTS: Longitudinal data from 97 new T2 lesions from 9 participants were analyzed; 25 lesions in 8 participants were classified as BH 6-12 months after initial appearance. Pre-lesion MVF, AVF, and MVF/AVF were significantly lower, and T1 was significantly higher, in the lesions that later became BHs (p < 0.001) compared to those that did not. No significant pre-lesion abnormalities were found in non-BH lesions (p > 0.05). CONCLUSION: The present work demonstrated that pre-lesion abnormalities are associated with worse long-term lesion-level outcome.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Axones/patología , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
6.
Magn Reson Med ; 86(4): 2192-2207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33956348

RESUMEN

PURPOSE: In this work, we propose that Δ B1+ -induced errors in magnetization transfer (MT) saturation (MTsat ) maps can be corrected with use of an R1 and B1+ map and through numerical simulations of the sequence. THEORY AND METHODS: One healthy subject was scanned at 3.0T using a partial quantitative MT protocol to estimate the relationship between observed R1 (R1,obs ) and apparent bound pool size ( M0,appB ) in the brain. MTsat values were simulated for a range of B1+ , R1,obs , and M0,appB . An equation was fit to the simulated MTsat , then a linear relationship between R1,obs and M0,appB was generated. These results were used to generate correction factor maps for the MTsat acquired from single-point data. The proposed correction was compared to an empirical correction factor with different MT-preparation schemes. RESULTS: M0,appB was highly correlated with R1,obs (r > 0.96), permitting the use of R1,obs to estimate M0,appB for B1+ correction. All B1+ corrected MTsat maps displayed a decreased correlation with B1+ compared to uncorrected MTsat and MTsat corrected with an empirical factor in the corpus callosum. There was good agreement between the proposed approach and the empirical correction with radiofrequency saturation at 2 kHz, with larger deviations seen when using saturation pulses further off-resonance and in inhomogeneous (ih) MTsat maps. CONCLUSION: The proposed correction decreases the dependence of MTsat on B1+ inhomogeneities. Furthermore, this flexible framework permits the use of different saturation protocols, making it useful for correcting B1+ inhomogeneities in ihMT.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Ondas de Radio
7.
Magn Reson Med ; 86(2): 738-753, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33749017

RESUMEN

PURPOSE: Most voxels in white matter contain multiple fiber populations with different orientations and levels of myelination. Conventional T1 mapping measures 1 T1 value per voxel, representing a weighted average of the multiple tract T1 times. Inversion-recovery diffusion-weighted imaging (IR-DWI) allows the T1 times of multiple tracts in a voxel to be disentangled, but the scan time is prohibitively long. Recently, slice-shuffled IR-DWI implementations have been proposed to significantly reduce scan time. In this work, we demonstrate that we can measure tract-specific T1 values in the whole brain using simultaneous multi-slice slice-shuffled IR-DWI at 3T. METHODS: We perform simulations to evaluate the accuracy and precision of our crossing fiber IR-DWI signal model for various fiber parameters. The proposed sequence and signal model are tested in a phantom consisting of crossing asparagus pieces doped with gadolinium to vary T1 , and in 2 human subjects. RESULTS: Our simulations show that tract-specific T1 times can be estimated within 5% of the nominal fiber T1 values. Tract-specific T1 values were resolved in subvoxel 2 fiber crossings in the asparagus phantom. Tract-specific T1 times were resolved in 2 different tract crossings in the human brain where myelination differences have previously been reported; the crossing of the cingulum and genu of the corpus callosum and the crossing of the corticospinal tract and pontine fibers. CONCLUSION: Whole-brain tract-specific T1 mapping is feasible using slice-shuffled IR-DWI at 3T. This technique has the potential to improve the microstructural characterization of specific tracts implicated in neurodevelopment, aging, and demyelinating disorders.


Asunto(s)
Sustancia Blanca , Encéfalo/diagnóstico por imagen , Cuerpo Calloso , Imagen de Difusión por Resonancia Magnética , Humanos , Tractos Piramidales , Sustancia Blanca/diagnóstico por imagen
8.
Neuroimage ; 182: 80-96, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28822750

RESUMEN

The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints. In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to diagnose, monitor, and treat disease. MRI based g-ratio imaging was first conceived in 2011, and expanded to be feasible in full brain white matter with preliminary results in 2013. This manuscript reviews the growing g-ratio imaging literature and speculates on future applications. It details the methodology for imaging the g-ratio with MRI, and describes the known pitfalls and challenges in doing so.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Fibras Nerviosas Mielínicas , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/normas , Humanos , Fibras Nerviosas Mielínicas/ultraestructura , Neuroimagen/normas
9.
Neuroimage ; 118: 397-405, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26004502

RESUMEN

The myelin g-ratio, defined as the ratio between the inner and the outer diameter of the myelin sheath, is a fundamental property of white matter that can be computed from a simple formula relating the myelin volume fraction to the fiber volume fraction or the axon volume fraction. In this paper, a unique combination of magnetization transfer, diffusion imaging and histology is presented, providing a novel method for in vivo magnetic resonance imaging of the axon volume fraction and the myelin g-ratio. Our method was demonstrated in the corpus callosum of one cynomolgus macaque, and applied to obtain full-brain g-ratio maps in one healthy human subject and one multiple sclerosis patient. In the macaque, the g-ratio was relatively constant across the corpus callosum, as measured by both MRI and electron microscopy. In the human subjects, the g-ratio in multiple sclerosis lesions was higher than in normal appearing white matter, which was in turn higher than in healthy white matter. Measuring the g-ratio brings us one step closer to fully characterizing white matter non-invasively, making it possible to perform in vivo histology of the human brain during development, aging, disease and treatment.


Asunto(s)
Axones/ultraestructura , Encéfalo/ultraestructura , Imagen de Difusión por Resonancia Magnética/métodos , Vaina de Mielina/ultraestructura , Adulto , Animales , Cuerpo Calloso/ultraestructura , Humanos , Macaca fascicularis , Fenómenos Magnéticos , Masculino , Ratones Mutantes Neurológicos , Esclerosis Múltiple/patología
10.
Nat Commun ; 15(1): 4706, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830849

RESUMEN

The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Tauopatías , Sustancia Blanca , Proteínas tau , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Femenino , Masculino , Anciano , Persona de Mediana Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética , Tauopatías/líquido cefalorraquídeo , Proteínas tau/metabolismo , Proteínas tau/líquido cefalorraquídeo , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Neuritas/metabolismo , Neuritas/patología
11.
Netw Neurosci ; 7(4): 1363-1388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144691

RESUMEN

A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.

12.
Mult Scler Relat Disord ; 56: 103309, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34688179

RESUMEN

BACKGROUND: Wave-CAIPI Visualization of Short Transverse relaxation time component (ViSTa) is a recently developed, short-T1-sensitized MRI method for fast quantification of myelin water fraction (MWF) in the human brain. It represents a promising technique for the evaluation of subtle, early signals of demyelination in the cerebral white matter of multiple sclerosis (MS) patients. Currently however, few studies exist that robustly assess the utility of ViSTa MWF measures of myelin compared to more conventional MRI measures of myelin in the brain of MS patients. Moreover, there are no previous studies evaluating the sensitivity of ViSTa MWF for the non-invasive detection of subtle tissue damage in both normal-appearing white matter (NAWM) and white matter lesions of MS patients. As a result, a central purpose of this study was to systematically evaluate the relationship between myelin sensitivity of T1-based ViSTa MWF mapping and a more generally recognized metric, Magnetization Transfer Saturation (MTsat), in healthy control and MS brain white matter. METHODS: ViSTa MWF and MTsat values were evaluated in automatically-classified normal appearing white matter (NAWM), white matter (WM) lesion tissue, cortical gray matter, and deep gray matter of 29 MS patients and 10 healthy controls using 3T MRI. MWF and MT sat were also assessed in a tract-specific manner using the Johns Hopkins University WM atlas. MRI-derived measures of cerebral myelin content were uniquely compared by employing non-normal distribution-specific measures of median, interquartile range and skewness. Separate analyses of variance were applied to test tissue-specific differences in MTsat and ViSTa MWF distribution metrics. Non-parametric tests were utilized when appropriate. All tests were corrected for multiple comparisons using the False Discovery Rate method at the level, α=0.05. RESULTS: Differences in whole NAWM MS tissue damage were detected with a higher effect size when using ViSTa MWF (q = 0.0008; ƞ2 = 0.34) compared to MTsat (q = 0.02; ƞ2= 0.24). We also observed that, as a possible measure of WM pathology, ViSTa-derived NAWM MWF voxel distributions of MS subjects were consistently skewed towards lower MWF values, while MTsat voxel distributions showed reduced skewness values. We further identified tract-specific reductions in mean ViSTa MWF of MS patients compared to controls that were not observed with MTsat. However, MTsat (q = 1.4 × 10-21; ƞ2 = 0.88) displayed higher effect sizes when differentiating NAWM and MS lesion tissue. Using regression analysis at the group level, we identified a linear relationship between MTsat and ViSTa MWF in NAWM (R2 = 0.46; p = 7.8 × 10-4) lesions (R2 = 0.30; p = 0.004), and with all tissue types combined (R2 = 0.71; p = 8.4 × 10-45). The linear relationship was also observed in most of the WM tracts we investigated. ViSTa MWF in NAWM of MS patients correlated with both disease duration (p = 0.02; R2 = 0.27) and WM lesion volume (p = 0.002; R2 = 0.34). CONCLUSION: Because ViSTa MWF and MTsat metrics exhibit differential sensitivities to tissue damage in MS white matter, they can be collected in combination to provide an efficient, comprehensive measure of myelin water and macromolecular pool proton signals. These complementary measures may offer a more sensitive, non-invasive biopsy of early precursor signals in NAWM that occur prior to lesion formation. They may also aid in monitoring the efficacy of remyelination therapies.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Vaina de Mielina , Agua , Sustancia Blanca/diagnóstico por imagen
13.
Front Neurol ; 10: 726, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379704

RESUMEN

Major hardware/software changes to MRI platforms, either planned or unplanned, will almost invariably occur in longitudinal studies. Our objective was to assess the resulting variability on relevant imaging measurements in such context, specifically for three Siemens Healthcare Magnetom Trio upgrades to the Prismafit platform. We report data acquired on three healthy volunteers scanned before and after three different platform upgrades. We assessed differences in image signal [contrast-to-noise ratio (CNR)] on T1-weighted images (T1w) and fluid-attenuated inversion recovery images (FLAIR); brain morphometry on T1w image; and small vessel disease (white matter hyperintensities; WMH) on FLAIR image. Prismafit upgrade resulted in higher (30%) and more variable neocortical CNR and larger brain volume and thickness mainly in frontal areas. A significant relationship was observed between neocortical CNR and neocortical volume. For FLAIR images, no significant CNR difference was observed, but WMH volumes were significantly smaller (-68%) after Prismafit upgrade, when compared to results on the Magnetom Trio. Together, these results indicate that Prismafit upgrade significantly influenced image signal, brain morphometry measures and small vessel diseases measures and that these effects need to be taken into account when analyzing results from any longitudinal study undergoing similar changes.

14.
J Clin Neurosci ; 58: 25-29, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30454692

RESUMEN

In order to evaluate the usefulness of presymptomatic MRI, we performed 3T brain MRI and Sanger gene sequencing in a proband with suspected but not confirmed CADASIL and her apparently asymptomatic father. The 35-year-old proband presented with migraine with visual aura. Brain MRI showed diffuse leukoencephalopathy, suggesting CADASIL. NOTCH3 gene sequencing (exons 3-6) was negative. Family history was unclear. The MRI study of the father documented severe, diffuse leukoencephalopathy, with involvement of the temporal poles and external capsules (not observed in the proband), and lacunar infarcts in the absence of cardiac disease or risk factors. The MRI findings were in favour of an autosomal dominant mode of transmission and reinforced the hypothesis of CADASIL. Full NOTCH3 gene sequencing uncovered a novel exon 8 mutation (c.1337G>A; p.Cys446Tyr) outside the most commonly mutated region of NOTCH3. The novel mutation leads to a typical MRI pattern but a variable overall phenotype. The study underlines the usefulness of combining full gene sequencing with familial MRI studies.


Asunto(s)
CADASIL/diagnóstico por imagen , CADASIL/genética , Variación Genética/genética , Imagen por Resonancia Magnética/métodos , Mutación/genética , Receptor Notch3/genética , Adulto , Anciano , Encéfalo/diagnóstico por imagen , CADASIL/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Migraña con Aura/complicaciones , Migraña con Aura/diagnóstico por imagen , Migraña con Aura/genética , Linaje , Factores de Riesgo
15.
Oncotarget ; 7(32): 50986-50996, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27248467

RESUMEN

PURPOSE: This pilot prospective study sought to determine whether dynamic contrast enhanced MRI (DCE-MRI) could be used as a clinical imaging biomarker of tissue toxicity from whole brain radiotherapy (WBRT). METHOD: 14 patients who received WBRT were imaged using dynamic contrast enhanced DCE-MRI prior to and at 8-weeks, 16-weeks and 24-weeks after the initiation of WBRT. Twelve of the patients were also enrolled in the RTOG 0614 trial, which randomized patients to the use of placebo or memantine. After the unblinding of the treatments received by RTOG 0614 patients, DCE-MRI measures of tumor tissue and normal appearing white matter (NAWM) vascular permeability (Initial Area Under the Curve (AUC) Blood Adjusted) was analyzed. Cognitive, quality-of-life (QOL) assessment and blood samples were collected according to the patient's ability to tolerate the exams. Circulating endothelial cells (CEC) were measured using flow cytometry. RESULTS: Following WBRT, there was an increasing trend in the vascular permeability of tumors (p=0.09) and NAWM (p=0.06) with time. Memantine significantly (p=0.01) reduced NAWM AUC changes following radiotherapy. Patients on memantine retained (COWA p= 0.03) better cognitive functions than those on placebo. No association was observed between the level of CEC and DCE-MRI changes, time from radiotherapy or memantine use. CONCLUSIONS: DCE-MRI can detect vascular damage secondary to WBRT. Our data suggests that memantine reduces WBRT-induced brain vasculature damages.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Imagen por Resonancia Magnética/métodos , Memantina/uso terapéutico , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/prevención & control , Protectores contra Radiación/uso terapéutico , Adulto , Anciano , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de la radiación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Permeabilidad Capilar , Medios de Contraste , Irradiación Craneana/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
16.
Front Neuroinform ; 10: 53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28111547

RESUMEN

Data sharing is becoming more of a requirement as technologies mature and as global research and communications diversify. As a result, researchers are looking for practical solutions, not only to enhance scientific collaborations, but also to acquire larger amounts of data, and to access specialized datasets. In many cases, the realities of data acquisition present a significant burden, therefore gaining access to public datasets allows for more robust analyses and broadly enriched data exploration. To answer this demand, the Montreal Neurological Institute has announced its commitment to Open Science, harnessing the power of making both clinical and research data available to the world (Owens, 2016a,b). As such, the LORIS and CBRAIN (Das et al., 2016) platforms have been tasked with the technical challenges specific to the institutional-level implementation of open data sharing, including: Comprehensive linking of multimodal data (phenotypic, clinical, neuroimaging, biobanking, and genomics, etc.)Secure database encryption, specifically designed for institutional and multi-project data sharing, ensuring subject confidentiality (using multi-tiered identifiers).Querying capabilities with multiple levels of single study and institutional permissions, allowing public data sharing for all consented and de-identified subject data.Configurable pipelines and flags to facilitate acquisition and analysis, as well as access to High Performance Computing clusters for rapid data processing and sharing of software tools.Robust Workflows and Quality Control mechanisms ensuring transparency and consistency in best practices.Long term storage (and web access) of data, reducing loss of institutional data assets.Enhanced web-based visualization of imaging, genomic, and phenotypic data, allowing for real-time viewing and manipulation of data from anywhere in the world.Numerous modules for data filtering, summary statistics, and personalized and configurable dashboards. Implementing the vision of Open Science at the Montreal Neurological Institute will be a concerted undertaking that seeks to facilitate data sharing for the global research community. Our goal is to utilize the years of experience in multi-site collaborative research infrastructure to implement the technical requirements to achieve this level of public data sharing in a practical yet robust manner, in support of accelerating scientific discovery.

17.
Data Brief ; 4: 368-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26217818

RESUMEN

We provide a detailed morphometric analysis of eight transmission electron micrographs (TEMs) obtained from the corpus callosum of one cynomolgus macaque. The raw TEM images are included in the article, along with the distributions of the axon caliber and the myelin g-ratio in each image. The distributions are analyzed to determine the relationship between axon caliber and g-ratio, and compared against the aggregate metrics (myelin volume fraction, fiber volume fraction, and the aggregate g-ratio), as defined in the accompanying research article entitled 'In vivo histology of the myelin g-ratio with magnetic resonance imaging' (Stikov et al., NeuroImage, 2015).

18.
Front Neurol ; 5: 216, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25389414

RESUMEN

Diffusion magnetic resonance imaging fiber tractography is a powerful tool for investigating human white matter connectivity in vivo. However, it is prone to false positive and false negative results, making interpretation of the tractography result difficult. Optimal tractography must begin with an accurate description of the subvoxel white matter fiber structure, includes quantification of the uncertainty in the fiber directions obtained, and quantifies the confidence in each reconstructed fiber tract. This paper presents a novel and comprehensive pipeline for fiber tractography that meets the above requirements. The subvoxel fiber geometry is described in detail using a technique that allows not only for straight crossing fibers but for fibers that curve and splay. This technique is repeatedly performed within a residual bootstrap statistical process in order to efficiently quantify the uncertainty in the subvoxel geometries obtained. A robust connectivity index is defined to quantify the confidence in the reconstructed connections. The tractography pipeline is demonstrated in the human brain.

19.
Neuroimage Clin ; 6: 126-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25379424

RESUMEN

BACKGROUND: Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. OBJECTIVE: To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. DESIGN/METHODS: We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. RESULTS: A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). CONCLUSION: This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures.


Asunto(s)
Encéfalo/fisiopatología , Circulación Cerebrovascular/fisiología , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/fisiopatología , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Asfixia Neonatal/diagnóstico , Asfixia Neonatal/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/irrigación sanguínea , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Estudios Prospectivos
20.
Proc IEEE Int Symp Biomed Imaging ; 2014: 1055-1058, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25356195

RESUMEN

Post-acquisition motion correction is widely performed in diffusion-weighted imaging (DWI) to guarantee voxel-wise correspondence between DWIs. Whereas this is primarily motivated to save as many scans as possible if corrupted by motion, users do not fully understand the consequences of different types of interpolation schemes on the final analysis. Nonetheless, interpolation might increase the partial volume effect while not preserving the volume of the diffusion profile, whereas excluding poor DWIs may affect the ability to resolve crossing fibers especially with small separation angles. In this paper, we investigate the effect of interpolating diffusion measurements as well as the elimination of bad directions on the reconstructed fiber orientation diffusion functions and on the estimated fiber orientations. We demonstrate such an effect on synthetic and real HARDI datasets. Our experiments demonstrate that the effect of interpolation is more significant with small fibers separation angles where the exclusion of motion-corrupted directions decreases the ability to resolve such crossing fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA