Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Chem Biol ; 20(1): 83-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857992

RESUMEN

The inner mitochondrial membrane (IMM) generates power to drive cell function, and its dynamics control mitochondrial health and cellular homeostasis. Here, we describe the cell-permeant, lipid-like small molecule MAO-N3 and use it to assemble high-density environmentally sensitive (HIDE) probes that selectively label and image the IMM in live cells and multiple cell states. MAO-N3 pairs with strain-promoted azide-alkyne click chemistry-reactive fluorophores to support HIDE imaging using confocal, structured illumination, single-molecule localization and stimulated emission depletion microscopy, all with significantly improved resistance to photobleaching. These probes generate images with excellent spatial and temporal resolution, require no genetic manipulations, are non-toxic in model cell lines and primary cardiomyocytes (even under conditions that amplify the effects of mitochondrial toxins) and can visualize mitochondrial dynamics for 12.5 h. This probe will enable comprehensive studies of IMM dynamics with high temporal and spatial resolution.


Asunto(s)
Colorantes Fluorescentes , Membranas Mitocondriales , Humanos , Células HeLa , Microscopía Fluorescente/métodos , Lípidos , Monoaminooxidasa
2.
Chemistry ; 29(7): e202202861, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36282517

RESUMEN

A significant barrier inhibiting multiplexed imaging in the near-infrared (NIR) is the extensive trial and error associated with fine-tuning NIR dyes. In particular, the need to synthesize and experimentally evaluate dye derivatives in order to empirically identify those that can be used in multiplexing applications, requires a large investment of time. While coarse-tuning efforts benefit from computational prediction that can be used to identify target dye structures for synthetic campaigns, errors in computational prediction remain too large to accurately parse modifications aimed at fine-tuning changes in dye absorbance and emission. To address this issue, we screened different levels of theory and identified a time-dependent density functional theory (TD-DFT) approach that can rapidly, as opposed to synthesis and experimental evaluation, estimate absorbance and emission. By calibrating these computational estimations of absorbance and emission to experimentally determined parameters for a panel of existing NIR dyes, we obtain calibration curves that can be used to accurately predict the effect of fine-tuning modifications in new dyes. We demonstrate the predictive power of this calibrated dataset using seven previously unreported dyes, obtaining mean percent errors in absorbance and emission of 2.2 and 2.8 %, respectively. This approach provides a significant timesavings, relative to synthesis and evaluation of dye derivatives, and can be used to focus synthetic campaigns on the most promising dye structures. The new dyes described herein can be utilized for multiplexed imaging, and the experimentally calibrated dataset will provide the dye chemistry community with a means to rapidly identify fine-tuned NIR dyes in silico to guide subsequent synthetic campaigns.

3.
J Am Chem Soc ; 144(27): 12138-12146, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35776693

RESUMEN

Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (Ligation Unquenched for Activation and Redistribution Rhodamine-based Voltage Reporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca2+ imaging to validate the electroneutrality of Ca2+ release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo , Ionóforos/metabolismo , Lisosomas/metabolismo , Potenciales de la Membrana , Orgánulos/metabolismo , Rodaminas/metabolismo
4.
Chemistry ; 26(70): 16721-16726, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32725914

RESUMEN

Engineered miniprotein host-small-molecule guest pairs could be utilized to design new processes within cells as well as investigate fundamental aspects of cell signaling mechanisms. However, the development of host-guest pairs capable of functioning in living systems has proven challenging. Moreover, few examples of host-guest pairs with stoichiometries other than 2:1 exist, significantly hindering the ability to study the influence of oligomerization state on signaling fidelity. Herein, we present an approach to identify host-guest systems for relatively small green fluorescent guests by incorporation into cyclic peptides. The optimal host-guest pair produced a 10-fold increase in green fluorescence signal upon binding. Biophysical characterization clearly demonstrated higher order supramolecular assembly, which could be visualized on the surface of living yeast cells using a turn-on fluorescence readout. This work further defines evolutionary design principles to afford host-guest pairs with stoichiometries other than 2:1 and enables the identification of spectrally orthogonal host-guest pairs.


Asunto(s)
Materiales Biocompatibles/análisis , Materiales Biocompatibles/química , Color , Fluorescencia , Saccharomyces cerevisiae , Péptidos Cíclicos/química , Unión Proteica
5.
Org Biomol Chem ; 18(13): 2459-2467, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167123

RESUMEN

Internalization of G protein-coupled receptor (GPCRs) represents a nearly universal pathway for receptor downregulation. Imaging this process provides a means for the identification of pharmaceutical agents as well as potential ligands for orphan receptors. However, there is a need for the further development of near-infrared (NIR) probes capable of monitoring internalization in order to enable multiplexing with existing green fluorescent GPCR activity assays. Our laboratory has recently described a series of near-infrared (NIR) fluorophores in which a phosphinate functionality is inserted at the bridging position of the xanthene scaffold. These fluorophores, termed Nebraska Red (NR) dyes, provide attractive reagents for imaging protein localization. Herein, we disclose the development of NR-based HaloTag ligands for imaging membrane proteins on living cells. These new probes are utilized to image membrane pools of the human orexin type 2 receptor, an established target for the treatment of insomnia. We demonstrate the ability of fetal bovine serum (FBS) to noncovalently associate with a spirolactonized NR probe, enabling no-wash imaging with a 45-fold enhancement of fluorescence. Furthermore, we characterize the utility of NR-based HaloTag ligands for real-time monitoring of receptor internalization upon agonist stimulation. These new reagents enable potential multiplexing with existing GPCR activity assays in order to identify new modulators of GPCR activity as well as ligands for orphan receptors.


Asunto(s)
Colorantes Fluorescentes/química , Receptores de Orexina/metabolismo , Animales , Células CHO , Cricetulus , Humanos , Hidrolasas/química , Hidrolasas/genética , Ligandos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mutación , Orexinas/metabolismo
6.
Chembiochem ; 20(13): 1712-1716, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753755

RESUMEN

Chemotherapeutic agents generally suffer from off-target cytotoxicity in noncancerous cell types, leading to undesired side effects. As a result, significant effort has been put into identifying compounds that are selective for cancerous over noncancerous cell types. Our laboratory has recently developed a series of near-infrared (NIR) fluorophores containing a phosphinate functionality at the bridging position of a xanthene scaffold, termed Nebraska Red (NR) fluorophores. Herein, we report the selective cytotoxicity of one NR derivative, NR744 , against HeLa (cervical cancer) cells versus NIH-3T3 (noncancerous fibroblast) cells. Mechanistic studies based on the NIR fluorescence signal of NR744 showed distinct subcellular localization in HeLa (mitochondrial) versus NIH-3T3 (lysosomal) that resulted from the elevated mitochondrial potential in HeLa cells. This study provides a new, NIR scaffold for the further development of reagents for targeted cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Colorantes Fluorescentes/farmacología , Ácidos Fosfínicos/farmacología , Animales , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/toxicidad , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/toxicidad , Humanos , Ratones , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Células 3T3 NIH , Ácidos Fosfínicos/metabolismo , Ácidos Fosfínicos/toxicidad
7.
Angew Chem Int Ed Engl ; 56(15): 4197-4200, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28319304

RESUMEN

Ratiometric sensors generally couple binding events or chemical reactions at a distal site to changes in the fluorescence of a core fluorophore scaffold. However, such approaches are often hindered by spectral overlap of the product and reactant species. We provide a strategy to design ratiometric sensors that display dramatic spectral shifts by leveraging the chemoselective reactivity of novel functional groups inserted within fluorophore scaffolds. As a proof-of-principle, fluorophores containing a borinate (RF620 ) or silanediol (SiOH2R) functionality at the bridging position of the xanthene ring system are developed as endogenous H2 O2 sensors. Both these fluorophores display far-red to near-infrared excitation and emission prior to reaction. Upon oxidation by H2 O2 both sensors are chemically converted to tetramethylrhodamine, producing significant (≥66 nm) blue-shifts in excitation and emission maxima. This work provides a new concept for the development of ratiometric probes.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Rodaminas/síntesis química , Ácidos Borínicos/química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Rodaminas/química , Silanos/química , Xantenos/química
8.
ACS Cent Sci ; 10(1): 19-27, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292604

RESUMEN

Lysosomes have long been known for their acidic lumens and efficient degradation of cellular byproducts. In recent years, it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size make lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time-lapse experiments as well as time-lapse super-resolution microscopy with a frame rate of 1.5 fps for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between mitochondria and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting a more detailed study of the role of lysosomes in dynamic cellular processes and disease.

9.
ACS Cent Sci ; 10(4): 860-870, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38680556

RESUMEN

The inefficient translocation of proteins across biological membranes limits their application as potential therapeutics and research tools. In many cases, the translocation of a protein involves two discrete steps: uptake into the endocytic pathway and endosomal escape. Certain charged or amphiphilic molecules can achieve high protein uptake, but few are capable of efficient endosomal escape. One exception to this rule is ZF5.3, a mini-protein that exploits elements of the natural endosomal maturation machinery to translocate across endosomal membranes. Although some ZF5.3-protein conjugates are delivered efficiently to the cytosol or nucleus, overall delivery efficiency varies widely for different cargoes with no obvious design rules. Here we show that delivery efficiency depends on the ability of the cargo to unfold. Using fluorescence correlation spectroscopy, a single-molecule technique that precisely measures intracytosolic protein concentration, we show that regardless of size and pI, low-Tm cargoes of ZF5.3 (including intrinsically disordered domains) bias endosomal escape toward a high-efficiency pathway that requires the homotypic fusion and protein sorting (HOPS) complex. Small protein domains are delivered with moderate efficiency through the same HOPS portal, even if the Tm is high. These findings imply a novel pathway out of endosomes that is exploited by ZF5.3 and provide clear guidance for the selection or design of optimally deliverable therapeutic cargo.

10.
bioRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961597

RESUMEN

The inefficient translocation of proteins across biological membranes limits their application as therapeutic compounds and research tools. In most cases, translocation involves two steps: uptake into the endocytic pathway and endosomal escape. Certain charged or amphiphilic molecules promote protein uptake but few enable efficient endosomal escape. One exception is ZF5.3, a mini-protein that exploits natural endosomal maturation machinery to translocate across endosomal membranes. Although certain ZF5.3-protein conjugates are delivered efficiently into the cytosol or nucleus, overall delivery efficiency varies widely with no obvious design rules. Here we evaluate the role of protein size and thermal stability in the ability to efficiently escape endosomes when attached to ZF5.3. Using fluorescence correlation spectroscopy, a single-molecule technique that provides a precise measure of intra-cytosolic protein concentration, we demonstrate that delivery efficiency depends on both size and the ease with which a protein unfolds. Regardless of size and pI, low-Tm cargos of ZF5.3 (including intrinsically disordered domains) bias its endosomal escape route toward a high-efficiency pathway that requires the homotypic fusion and protein sorting (HOPS) complex. Small protein domains are delivered with moderate efficiency through the same HOPS portal even if the Tm is high. These findings imply a novel protein- and/or lipid-dependent pathway out of endosomes that is exploited by ZF5.3 and provide clear guidance for the selection or design of optimally deliverable therapeutic cargo.

11.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577591

RESUMEN

Lysosomes have long been known for their acidic lumen and efficient degradation of cellular byproducts. In recent years it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size makes lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time lapse experiments, as well as time lapse super-resolution microscopy with a fast frame rate for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between the inner mitochondrial membrane and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting more detailed study of the role of lysosomes in dynamic cellular processes and disease.

12.
RSC Med Chem ; 12(8): 1366-1373, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34458739

RESUMEN

The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA