Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 144(22): 9836-9844, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635564

RESUMEN

Lithium metal anodes offer a huge leap in the energy density of batteries, yet their implementation is limited by solid electrolyte interphase (SEI) formation and dendrite deposition. A key challenge in developing electrolytes leading to the SEI with beneficial properties is the lack of experimental approaches for directly probing the ionic permeability of the SEI. Here, we introduce lithium chemical exchange saturation transfer (Li-CEST) as an efficient nuclear magnetic resonance (NMR) approach for detecting the otherwise invisible process of Li exchange across the metal-SEI interface. In Li-CEST, the properties of the undetectable SEI are encoded in the NMR signal of the metal resonance through their exchange process. We benefit from the high surface area of lithium dendrites and are able, for the first time, to detect exchange across solid phases through CEST. Analytical Bloch-McConnell models allow us to compare the SEI permeability formed in different electrolytes, making the presented Li-CEST approach a powerful tool for designing electrolytes for metal-based batteries.


Asunto(s)
Electrólitos , Litio , Fenómenos Químicos , Electrodos , Iones , Litio/química
2.
Solid State Nucl Magn Reson ; 117: 101763, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34890977

RESUMEN

The increasing need for portable and large-scale energy storage systems requires development of new, long lasting and highly efficient battery systems. Solid state NMR spectroscopy has emerged as an excellent method for characterizing battery materials. Yet, it is limited when it comes to probing thin interfacial layers which play a central role in the performance and lifetime of battery cells. Here we review how Dynamic Nuclear Polarization (DNP) can lift the sensitivity limitation and enable detection of the electrode-electrolyte interface, as well as the bulk of some electrode and electrolyte systems. We describe the current challenges from the point of view of materials development; considering how the unique electronic, magnetic and chemical properties differentiate battery materials from other applications of DNP in materials science. We review the current applications of exogenous and endogenous DNP from radicals, conduction electrons and paramagnetic metal ions. Finally, we provide our perspective on the opportunities and directions where battery materials can benefit from current DNP methodologies as well as project on future developments that will enable NMR investigation of battery materials with sensitivity and selectivity under ambient conditions.


Asunto(s)
Suministros de Energía Eléctrica , Electrones , Espectroscopía de Resonancia Magnética/métodos
3.
Nano Lett ; 21(23): 9916-9921, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34813333

RESUMEN

Colloidal inorganic nanofluorides have aroused great interest for various applications with their development greatly accelerated thanks to advanced synthetic approaches. Nevertheless, understanding their colloidal evolution and the factors that affect their dispersion could improve the ability to rationally design them. Here, using a multimodal in situ approach that combines DLS, NMR, and cryogenic-TEM, we elucidate the formation dynamics of nanofluorides in water through a transient aggregative phase. Specifically, we demonstrate that ligand-cation interactions mediate a transient aggregation of as-formed CaF2 nanocrystals (NCs) which governs the kinetics of the colloids' evolution. These observations shed light on key stages through which CaF2 NCs are dispersed in water, highlighting fundamental aspects of nanofluorides formation mechanisms. Our findings emphasize the roles of ligands in NCs' synthesis beyond their function as surfactants, including their ability to mediate colloidal evolution by complexing cationic precursors, and should be considered in the design of other types of NCs.


Asunto(s)
Fluoruros , Nanopartículas , Cationes , Coloides/química , Ligandos , Nanopartículas/química
4.
J Am Chem Soc ; 143(12): 4694-4704, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33751895

RESUMEN

Degradation processes at the cathode-electrolyte interface are a major limitation in the development of high-energy lithium-ion rechargeable batteries. Deposition of protective thin coating layers on the surface of high-energy cathodes is a promising approach to control interfacial reactions. However, rational design of effective protection layers is limited by the scarcity of analytical tools that can probe thin, disordered, and heterogeneous phases. Here we propose a new structural approach based on solid-state nuclear magnetic resonance spectroscopy coupled with dynamic nuclear polarization (DNP) for characterizing thin coating layers. We demonstrate the approach on an efficient alkylated LixSiyOz coating layer. By utilizing different sources for DNP, exogenous from nitroxide biradicals and endogenous from paramagnetic metal ion dopants, we reveal the outer and inner surface layers of the deposited artificial interphase and construct a structural model for the coating. In addition, lithium isotope exchange experiments provide direct evidence for the function of the surface layer, shedding light on its role in the enhanced rate performance of coated cathodes. The presented methodology and results advance us in identifying the key properties of effective coatings and may enable rational design of protective and ion-conducting surface layers.

5.
J Am Chem Soc ; 141(1): 451-462, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525555

RESUMEN

In recent years magic angle spinning-dynamic nuclear polarization (MAS-DNP) has developed as an excellent approach for boosting the sensitivity of solid-state NMR (ssNMR) spectroscopy, thereby enabling the characterization of challenging systems in biology and chemistry. Most commonly, MAS-DNP is based on the use of nitroxide biradicals as polarizing agents. In materials science, since the use of nitroxides often limits the signal enhancement to the materials' surface and subsurface layers, there is need for hyperpolarization approaches which will provide sensitivity in the bulk of micron sized particles. Recently, an alternative in the form of paramagnetic metal ions has emerged. Here we demonstrate the remarkable efficacy of Mn(II) dopants, used as endogenous polarization agents for MAS-DNP, in enabling the detection of 17O at a natural abundance of only 0.038%. Distinct oxygen sites are identified in the bulk of micron-sized crystals, including battery anode materials Li4Ti5O12 (LTO) and Li2ZnTi3O8, as well as the phosphor materials NaCaPO4 and MgAl2O4, all doped with Mn(II) ions. Density functional theory calculations are used to assign the resonances to specific oxygen environments in these phases. Depending on the Mn(II) dopant concentration, we obtain significant signal enhancement factors, 142 and 24, for 6Li and 7Li nuclei in LTO, respectively. We furthermore follow the changes in the 6,7Li LTO resonances and determine their enhancement factors as a function of Mn(II) concentration. The results presented show that MAS-DNP from paramagnetic metal ion dopants provides an efficient approach for probing informative nuclei such as 17O, despite their low gyromagnetic ratio and negligible abundance, without isotope enrichment.

6.
Solid State Nucl Magn Reson ; 99: 7-14, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30826711

RESUMEN

In recent years dynamic nuclear polarization (DNP) has greatly expanded the range of materials systems that can be studied by solid state NMR spectroscopy. To date, the majority of systems studied by DNP were insulating materials including organic and inorganic solids. However, many technologically-relevant materials used in energy conversion and storage systems are electrically conductive to some extent or are employed as composites containing conductive additives. Such materials introduce challenges in their study by DNP-NMR which include microwave absorption and sample heating that were not thoroughly investigated so far. Here we examine several commercial carbon allotropes, commonly employed as electrodes or conductive additives, and consider their effect on the extent of solvent polarization achieved in DNP from nitroxide biradicals. We then address the effect of sample conductivity systematically by studying a series of carbons with increasing electrical conductivity prepared via glucose carbonization. THz spectroscopy measurements are used to determine the extent of µw absorption. Our results show that while the DNP performance significantly drops in samples containing the highly conductive carbons, sufficient signal enhancement can still be achieved with some compromise on conductivity. Furthermore, we show that the deleterious effect of conductive additives on DNP enhancements can be partially overcome through pulse-DNP experiments.

7.
Chemphyschem ; 19(17): 2139-2142, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29770999

RESUMEN

Dynamic nuclear polarization (DNP), a technique in which the high electron spin polarization is transferred to surrounding nuclei via microwave irradiation, equips solid-state NMR spectroscopy with unprecedented sensitivity. The most commonly used polarization agents for DNP are nitroxide radicals. However, their applicability to inorganic materials is mostly limited to surface detection. Paramagnetic metal ions were recently introduced as alternatives for nitroxides. Doping inorganic solids with paramagnetic ions can be used to tune material properties and introduces endogenous DNP agents that can potentially provide sensitivity in the particles' bulk and surface. Here we demonstrate the approach by doping Li4 Ti5 O12 (LTO), an anode material for lithium ion batteries, with paramagnetic ions. By incorporating Gd(III) and Mn(II) in LTO we gain up to 14 fold increase in signal intensity in static 7 Li DNP-NMR experiments. These results suggest that doping with paramagnetic ions provides an efficient route for sensitivity enhancement in the bulk of micron size particles.

8.
J Chem Phys ; 146(10): 104202, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28298092

RESUMEN

Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

9.
J Am Chem Soc ; 138(25): 7918-31, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27232540

RESUMEN

The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles.

10.
Inorg Chem ; 55(9): 4335-43, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27065434

RESUMEN

Olivine MnPO4 is the delithiated phase of the lithium-ion-battery cathode (positive electrode) material LiMnPO4, which is formed at the end of charge. This phase is metastable under ambient conditions and can only be produced by delithiation of LiMnPO4. We have revealed the manganese dissolution phenomenon during chemical delithiation of LiMnPO4, which causes amorphization of olivine MnPO4. The properties of crystalline MnPO4 obtained from carbon-coated LiMnPO4 and of the amorphous product resulting from delithiation of pure LiMnPO4 were studied and compared. The phosphorus-rich amorphous phases in the latter are considered to be MnHP2O7 and MnH2P2O7 from NMR, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy analysis. The thermal stability of MnPO4 is significantly higher under high vacuum than at ambient condition, which is shown to be related to surface water removal.

11.
J Am Chem Soc ; 137(26): 8499-508, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26053432

RESUMEN

Vanadium sulfide VS4 in the patronite mineral structure is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2](2-). (51)V NMR shows that the material, despite having V formally in the d(1) configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S(2-), via an internal redox process whereby an electron from V(4+) is transferred to [S2](2-) resulting in oxidation of V(4+) to V(5+) and reduction of the [S2](2-) to S(2-) to form Li3VS4 containing tetrahedral [VS4](3-) anions. On further lithiation this is followed by reduction of the V(5+) in Li3VS4 to form Li3+xVS4 (x = 0.5-1), a mixed valent V(4+)/V(5+) compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. The unusual redox processes in this system are elucidated using a suite of short-range characterization tools including (51)V nuclear magnetic resonance spectroscopy (NMR), S K-edge X-ray absorption near edge spectroscopy (XANES), and pair distribution function (PDF) analysis of X-ray data.

12.
Phys Chem Chem Phys ; 17(34): 22311-20, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26246217

RESUMEN

The Carr-Purcell-Meiboom-Gill (CPMG) sequence is commonly used in high resolution NMR spectroscopy and in magnetic resonance imaging for the measurement of transverse relaxation in systems that are subject to diffusion in internal or external gradients and is superior to the Hahn echo measurement, which is more sensitive to diffusion effects. Similarly, it can potentially be used to study dynamic processes in electrode materials for lithium ion batteries. Here we compare the (7)Li signal decay curves obtained with the CPMG and Hahn echo sequences under static conditions (i.e., in the absence of magic angle spinning) in paramagnetic materials with varying transition metal ion concentrations. Our results indicate that under CPMG pulse trains the lifetime of the (7)Li signal is substantially extended and is correlated with the strength of the electron-nuclear interaction. Numerical simulations and analytical calculations using Floquet theory suggest that the combination of large interactions and a train of finite pulses, results in a spin locking effect which significantly slows the signal's decay. While these effects complicate the interpretation of CPMG-based investigations of diffusion and chemical exchange in paramagnetic materials, they may provide a useful approach to extend the signal's lifetime in these often fast relaxing systems, enabling the use of correlation experiments. Furthermore, these results highlight the importance of developing a deeper understanding of the effects of the large paramagnetic interactions during multiple pulse experiments in order to extend the experimental arsenal available for static and in situ NMR investigations of paramagnetic materials.

13.
Angew Chem Int Ed Engl ; 54(49): 14782-6, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26458153

RESUMEN

Mobi-Li-ty: Lithium mobility, as a function of temperature during battery cycling, can be simply monitored by using in situ T2' relaxation measurements. Since Li dynamics are strongly related to structural properties, the changes in in situ T2' can be used to detect structural changes, such as Li ordering.

14.
Angew Chem Int Ed Engl ; 54(20): 5919-23, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25810151

RESUMEN

Previous theoretical studies of C3B have suggested that boron-doped graphite is a promising H2- and Li-storage material, with large maximum capacities. These characteristics could lead to exciting applications as a lightweight H2-storage material for automotive engines and as an anode in a new generation of batteries. However, for these applications to be realized a synthetic route to bulk C3B must be developed. Here we show the thermolysis of a single-source precursor (1,3-(BBr2)2C6H4) to produce graphitic C3B, thus allowing the characteristics of this elusive material to be tested for the first time. C3B was found to be compositionally uniform but turbostratically disordered. Contrary to theoretical expectations, the H2- and Li-storage capacities are lower than anticipated, results that can partially be explained by the disordered nature of the material. This work suggests that to model the properties of graphitic materials more realistically, the possibility of disorder must be considered.

15.
J Am Chem Soc ; 136(46): 16368-77, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25384082

RESUMEN

The high theoretical gravimetric capacity of the Li-S battery system makes it an attractive candidate for numerous energy storage applications. In practice, cell performance is plagued by low practical capacity and poor cycling. In an effort to explore the mechanism of the discharge with the goal of better understanding performance, we examine the Li-S phase diagram using computational techniques and complement this with an in situ (7)Li NMR study of the cell during discharge. Both the computational and experimental studies are consistent with the suggestion that the only solid product formed in the cell is Li2S, formed soon after cell discharge is initiated. In situ NMR spectroscopy also allows the direct observation of soluble Li(+)-species during cell discharge; species that are known to be highly detrimental to capacity retention. We suggest that during the first discharge plateau, S is reduced to soluble polysulfide species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in the cell configuration studied here. The NMR data suggest that the second plateau is defined by the reduction of the residual soluble species to solid product (Li2S). A ternary diagram is presented to rationalize the phases observed with NMR during the discharge pathway and provide thermodynamic underpinnings for the shape of the discharge profile as a function of cell composition.

16.
Acc Chem Res ; 46(9): 1952-63, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24041242

RESUMEN

Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

17.
Prog Nucl Magn Reson Spectrosc ; 138-139: 70-104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38065669

RESUMEN

Over the last two decades magic angle spinning dynamic nuclear polarization (MAS DNP) has revolutionized NMR for materials characterization, tackling its main limitation of intrinsically low sensitivity. Progress in theoretical understanding, instrumentation, and sample formulation expanded the range of materials applications and research questions that can benefit from MAS DNP. Currently the most common approach for hyperpolarization under MAS consists in impregnating the sample of interest with a solution containing nitroxide radicals, which upon microwave irradiation serve as exogenous polarizing agents. On the other hand, in metal ion based (MI)-DNP, inorganic materials are doped with paramagnetic metal centres, which then can be used as endogenous polarizing agents. In this work we give an overview of the electron paramagnetic resonance (EPR) concepts required to characterize the metal ions and discuss the expected changes in the NMR response due to the presence of paramagnetic species. We highlight which properties of the electron spins are beneficial for applications as polarizing agents in DNP and how to recognize them, both from the EPR and NMR data. A theoretical description of the main DNP mechanisms is given, employing a quantum mechanical formalism, and these concepts are used to explain the spin dynamics observed in the DNP experiment. In addition, we highlight the main differences between MI-DNP and the more common approaches in MAS DNP, which use organic radicals as exogenous polarizing source. Finally, we review some applications of metal ions as polarizing agents in general and then focus particularly on research questions in materials science that can benefit from MI-DNP.

18.
J Phys Chem C Nanomater Interfaces ; 127(9): 4759-4772, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36925559

RESUMEN

In dynamic nuclear polarization nuclear magnetic resonance (DNP-NMR) experiments, the large Boltzmann polarization of unpaired electrons is transferred to surrounding nuclei, leading to a significant increase in the sensitivity of the NMR signal. In order to obtain large polarization gains in the bulk of inorganic samples, paramagnetic metal ions are introduced as minor dopants acting as polarizing agents. While this approach has been shown to be very efficient in crystalline inorganic oxides, significantly lower enhancements have been reported when applying this approach to oxide glasses. In order to rationalize the origin of the difference in the efficiency of DNP in amorphous and crystalline inorganic matrices, we performed a detailed comparison in terms of their magnetic resonance properties. To diminish differences in the DNP performance arising from distinct nuclear interactions, glass and crystal systems of similar compositions were chosen, Li2OCaO·2SiO2 and Li2CaSiO4, respectively. Using Gd(III) as polarizing agent, DNP provided signal enhancements in the range of 100 for the crystalline sample, while only up to around factor 5 in the glass, for both 6Li and 29Si nuclei. We find that the drop in enhancement in glasses can be attributed to three main factors: shorter nuclear and electron relaxation times as well as the dielectric properties of glass and crystal. The amorphous nature of the glass sample is responsible for a high dielectric loss, leading to efficient microwave absorption and consequently lower effective microwave power and an increase in sample temperature which leads to further reduction of the electron relaxation time. These results help rationalize the observed sensitivity enhancements and provide guidance in identifying materials that could benefit from the DNP approach.

19.
Chem Sci ; 15(1): 336-348, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131097

RESUMEN

Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.

20.
Chemistry ; 18(38): 11867-70, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22907895

RESUMEN

The solvothermal reactions of Ti(OEt)(4) with LnCl(3) (Ln = La, Ce) produced new Ti(28) Ln cages, in which the Ln(3+) ions are coordinated within a metallocrown arrangement, which represents the highest nuclearity cages of this type (see figure).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA