Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 130(4): 397-407, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28576879

RESUMEN

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielomonocítica Juvenil/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Pirimidinas/farmacología , Animales , Femenino , Xenoinjertos , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
2.
Pharmacol Res ; 150: 104508, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698067

RESUMEN

Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Humanos , Neoplasias/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Blood ; 136(7): 909-913, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294158
4.
Neurobiol Dis ; 94: 55-62, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27312774

RESUMEN

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Although an increasing number of genetic factors have been connected to this debilitating condition, the proportion of cases that can be attributed to distinct genetic defects is unknown. To provide a comprehensive analysis of the frequency and spectrum of pathogenic missense mutations and coding risk variants in nine genes previously implicated in DLB, we performed exome sequencing in 111 pathologically confirmed DLB patients. All patients were Caucasian individuals from North America. Allele frequencies of identified missense mutations were compared to 222 control exomes. Remarkably, ~25% of cases were found to carry a pathogenic mutation or risk variant in APP, GBA or PSEN1, highlighting that genetic defects play a central role in the pathogenesis of this common neurodegenerative disorder. In total, 13% of our cohort carried a pathogenic mutation in GBA, 10% of cases carried a risk variant or mutation in PSEN1, and 2% were found to carry an APP mutation. The APOE ε4 risk allele was significantly overrepresented in DLB patients (p-value <0.001). Our results conclusively show that mutations in GBA, PSEN1, and APP are common in DLB and consideration should be given to offer genetic testing to patients diagnosed with Lewy body dementia.


Asunto(s)
Demencia/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad por Cuerpos de Lewy/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Cuerpos de Lewy/genética , Masculino , Persona de Mediana Edad , Mutación/genética , América del Norte
5.
Clin Cancer Res ; 29(15): 2919-2932, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223910

RESUMEN

PURPOSE: Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN: To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS: We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS: Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.


Asunto(s)
Leucemia Mielomonocítica Crónica , MicroARNs , Humanos , Línea Celular Tumoral , Proteínas , MicroARNs/genética , MicroARNs/metabolismo
7.
Blood Cancer Discov ; 3(6): 536-553, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053528

RESUMEN

Myeloblast expansion is a hallmark of disease progression and comprises CD34+ hematopoietic stem and progenitor cells (HSPC). How this compartment evolves during disease progression in chronic myeloid neoplasms is unknown. Using single-cell RNA sequencing and high-parameter flow cytometry, we show that chronic myelomonocytic leukemia (CMML) CD34+ HSPC can be classified into three differentiation trajectories: monocytic, megakaryocyte-erythroid progenitor (MEP), and normal-like. Hallmarks of monocytic-biased trajectory were enrichment of CD120b+ inflammatory granulocyte-macrophage progenitor (GMP)-like cells, activated cytokine receptor signaling, phenotypic hematopoietic stem cell (HSC) depletion, and adverse outcomes. Cytokine receptor diversity was generally an adverse feature and elevated in CD120b+ GMPs. Hypomethylating agents decreased monocytic-biased cells in CMML patients. Given the enrichment of RAS pathway mutations in monocytic-biased cells, NRAS-competitive transplants and LPS-treated xenograft models recapitulated monocytic-biased CMML, suggesting that hematopoietic stress precipitates the monocytic-biased state. Deconvolution of HSPC compartments in other myeloid neoplasms and identifying therapeutic strategies to mitigate the monocytic-biased differentiation trajectory should be explored. SIGNIFICANCE: Our findings establish that multiple differentiation states underlie CMML disease progression. These states are negatively augmented by inflammation and positively affected by hypomethylating agents. Furthermore, we identify HSC depletion and expansion of GMP-like cells with increased cytokine receptor diversity as a feature of myeloblast expansion in inflammatory chronic myeloid neoplasms. This article is highlighted in the In This Issue feature, p. 476.


Asunto(s)
Leucemia Mielomonocítica Crónica , Leucemia Mielomonocítica Juvenil , Humanos , Leucemia Mielomonocítica Crónica/genética , Células Madre Hematopoyéticas , Antígenos CD34/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Progresión de la Enfermedad , Receptores de Citocinas/metabolismo
8.
Clin Cancer Res ; 27(22): 6095-6105, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34253584

RESUMEN

PURPOSE: Chronic myelomonocytic leukemia (CMML) is a rare leukemia characterized by peripheral monocytosis with no disease-modifying therapies. CMML cells are uniquely hypersensitive to granulocyte-macrophage colony-stimulating factor (GM-CSF) and robustly engraft in immunocompromised mice that secrete human cytokines. To leverage these unique biological features, we conducted an integrated human and murine study evaluating ruxolitinib, a JAK1/2 inhibitor that potently downregulates intracellular GM-CSF signaling. PATIENTS AND METHODS: A total of 50 patients with WHO-defined CMML were enrolled in this open-label, multi-institution phase I/II clinical study, with a ruxolitinib dose of 20 mg twice daily studied in phase II. In parallel, 49 patient-derived xenografts (PDX) derived from 13 study participants were generated and randomized to receive ruxolitinib or vehicle control. RESULTS: The most common grade 3/4 treatment-related toxicities observed were anemia (10%) and thrombocytopenia (6%). The clinical overall response rate was 38% by Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) International Working Group (IWG) criteria and 43% of patients with baseline splenomegaly achieved a spleen response. Profiling of cytokine levels and somatic mutations at baseline failed to identify predictive biomarkers. PDX models derived from screening samples of study participants recapitulated responses seen in humans, particularly spleen responses, and corroborated ruxolitinib's clinical efficacy in a randomized murine study not feasible in human trials. CONCLUSIONS: Ruxolitinib demonstrated clinical efficacy and an acceptable adverse event profile in patients with CMML, identifying a potential novel therapeutic in this rare malignancy. Furthermore, this study demonstrates proof of concept that PDX modeling can recapitulate responses of patients treated on clinical trial and represents a novel correlative study that corroborates clinical efficacy seen in humans.See related commentary by Shastri and Adrianzen-Herrera, p. 6069.


Asunto(s)
Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor , Ensayos Clínicos como Asunto , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/etiología , Leucemia Mielomonocítica Crónica/mortalidad , Masculino , Ratones , Persona de Mediana Edad , Mutación , Pronóstico , Resultado del Tratamiento
9.
Comp Med ; 69(4): 276-282, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31349880

RESUMEN

Modeling chronic myelomonocytic leukemia (CMML) in immunodeficient NSGS mice relies on unique human CMML specimens and consistent murine engraftment. Only anecdotal comments have thus far supported the notion that research data may be altered by Corynebacterium bovis, an opportunistic cutaneous pathogen of immunodeficient mice. C. bovis disseminated by asymptomatic and clinically affected mice with hyperkeratotic dermatitis, resulting in resilient facility contamination and infectious recurrence. Herein we report that, compared with C. bovis PCR-negative counterparts, C. bovis PCR-positive NSGS mice developed periocular and facial hyperkeratosis and alopecia and had reduced metrics indicative of ineffective human CMML engraftment, including less thrombocytopenia, less splenomegaly, fewer CMML infiltrates in histopathologic sections of murine organs, and fewer human CD45+ cells in samples from murine spleen, bone marrow, and peripheral blood that were analyzed by flow cytometry. All CMML model metrics of engraftment were significantly reduced in the C. bovis PCR-positive cohort compared with the - negative cohort. In addition, a survey of comprehensive cancer center practices revealed that most murine facilities do not routinely test for C. bovis or broadly decontaminate the facility or its equipment after a C. bovis outbreak, thus increasing the likelihood of recurrence of invalidated studies. Our findings document that CMML engraftment of NSGS mice is diminished-and the integrity of murine research data jeopardized-by C. bovis infection of immunodeficient mice. In addition, our results indicate that C. bovis should be excluded from and not tolerated in murine facilities housing immunodeficient strains.


Asunto(s)
Infecciones por Corynebacterium/complicaciones , Corynebacterium/aislamiento & purificación , Leucemia Mielomonocítica Crónica/complicaciones , Animales , Corynebacterium/patogenicidad , Infecciones por Corynebacterium/diagnóstico , Infecciones por Corynebacterium/inmunología , Contaminación de Equipos , Humanos , Leucemia Mielomonocítica Crónica/inmunología , Ratones , Infecciones Oportunistas/complicaciones , Infecciones Oportunistas/diagnóstico , Infecciones Oportunistas/inmunología , Reacción en Cadena de la Polimerasa
10.
Leukemia ; 33(3): 671-685, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30206308

RESUMEN

The Notch signaling pathway contributes to the pathogenesis of a wide spectrum of human cancers, including hematopoietic malignancies. Its functions are highly dependent on the specific cellular context. Gain-of-function NOTCH1 mutations are prevalent in human T-cell leukemia, while loss of Notch signaling is reported in myeloid leukemias. Here, we report a novel oncogenic function of Notch signaling in oncogenic Kras-induced myeloproliferative neoplasm (MPN). We find that downregulation of Notch signaling in hematopoietic cells via DNMAML expression or Pofut1 deletion significantly blocks MPN development in KrasG12D mice in a cell-autonomous manner. Further mechanistic studies indicate that inhibition of Notch signaling upregulates Dusp1, a dual phosphatase that inactivates p-ERK, and downregulates cytokine-evoked ERK activation in KrasG12D cells. Moreover, mitochondrial metabolism is greatly enhanced in KrasG12D cells but significantly reprogrammed by DNMAML close to that in control cells. Consequently, cell proliferation and expanded myeloid compartment in KrasG12D mice are significantly reduced. Consistent with these findings, combined inhibition of the MEK/ERK pathway and mitochondrial oxidative phosphorylation effectively inhibited the growth of human and mouse leukemia cells in vitro. Our study provides a strong rational to target both ERK signaling and aberrant metabolism in oncogenic Ras-driven myeloid leukemia.


Asunto(s)
Regulación hacia Abajo/genética , Leucemia Mieloide/genética , Sistema de Señalización de MAP Quinasas/genética , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores Notch/genética , Transducción de Señal/genética , Animales , Proliferación Celular/genética , Citocinas/genética , Fosfatasa 1 de Especificidad Dual/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mutación/genética , Fosforilación Oxidativa , Regulación hacia Arriba/genética
11.
Lancet Neurol ; 14(10): 1002-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26271532

RESUMEN

BACKGROUND: Accurate diagnosis and early detection of complex diseases, such as Parkinson's disease, has the potential to be of great benefit for researchers and clinical practice. We aimed to create a non-invasive, accurate classification model for the diagnosis of Parkinson's disease, which could serve as a basis for future disease prediction studies in longitudinal cohorts. METHODS: We developed a model for disease classification using data from the Parkinson's Progression Marker Initiative (PPMI) study for 367 patients with Parkinson's disease and phenotypically typical imaging data and 165 controls without neurological disease. Olfactory function, genetic risk, family history of Parkinson's disease, age, and gender were algorithmically selected by stepwise logistic regression as significant contributors to our classifying model. We then tested the model with data from 825 patients with Parkinson's disease and 261 controls from five independent cohorts with varying recruitment strategies and designs: the Parkinson's Disease Biomarkers Program (PDBP), the Parkinson's Associated Risk Study (PARS), 23andMe, the Longitudinal and Biomarker Study in PD (LABS-PD), and the Morris K Udall Parkinson's Disease Research Center of Excellence cohort (Penn-Udall). Additionally, we used our model to investigate patients who had imaging scans without evidence of dopaminergic deficit (SWEDD). FINDINGS: In the population from PPMI, our initial model correctly distinguished patients with Parkinson's disease from controls at an area under the curve (AUC) of 0·923 (95% CI 0·900-0·946) with high sensitivity (0·834, 95% CI 0·711-0·883) and specificity (0·903, 95% CI 0·824-0·946) at its optimum AUC threshold (0·655). All Hosmer-Lemeshow simulations suggested that when parsed into random subgroups, the subgroup data matched that of the overall cohort. External validation showed good classification of Parkinson's disease, with AUCs of 0·894 (95% CI 0·867-0·921) in the PDBP cohort, 0·998 (0·992-1·000) in PARS, 0·955 (no 95% CI available) in 23andMe, 0·929 (0·896-0·962) in LABS-PD, and 0·939 (0·891-0·986) in the Penn-Udall cohort. Four of 17 SWEDD participants who our model classified as having Parkinson's disease converted to Parkinson's disease within 1 year, whereas only one of 38 SWEDD participants who were not classified as having Parkinson's disease underwent conversion (test of proportions, p=0·003). INTERPRETATION: Our model provides a potential new approach to distinguish participants with Parkinson's disease from controls. If the model can also identify individuals with prodromal or preclinical Parkinson's disease in prospective cohorts, it could facilitate identification of biomarkers and interventions. FUNDING: National Institute on Aging, National Institute of Neurological Disorders and Stroke, and the Michael J Fox Foundation.


Asunto(s)
Modelos Estadísticos , Enfermedad de Parkinson/diagnóstico , Anciano , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Síntomas Prodrómicos
12.
Neurobiol Aging ; 35(2): 442.e9-442.e16, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24080174

RESUMEN

Genome-wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson's disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and control subjects from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, although our study was largely underpowered to detect individual associations, we replicated 5 of 32 previously published risk variants with nominal p values <0.05. Genome-wide complex trait analysis revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece, similarly to other worldwide populations, that remains to be discovered.


Asunto(s)
Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Anciano , Alelos , Femenino , Genotipo , Grecia , Humanos , Masculino , Persona de Mediana Edad , Riesgo
13.
Nat Genet ; 46(9): 989-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064009

RESUMEN

We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55-4.30; P = 2 × 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation.


Asunto(s)
Sitios Genéticos , Enfermedad de Parkinson/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
14.
Med Hypotheses ; 81(1): 62-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23643704

RESUMEN

A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.


Asunto(s)
Fusión Celular , Endocitosis , Herpesviridae/fisiología , MicroARNs/fisiología , Proteína p53 Supresora de Tumor/fisiología , Humanos
15.
Cell Cycle ; 12(22): 3500-11, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24091633

RESUMEN

Efficient and error-free DNA repair is critical for safeguarding genome integrity, yet it is also linked to radio- and chemoresistance of malignant tumors. miR-34a, a potent tumor suppressor, influences a large set of p53-regulated genes and contributes to p53-mediated apoptosis. However, the effects of miR-34a on the processes of DNA damage and repair are not entirely understood. We explored tet-inducible miR-34a-expressing human p53 wild-type and R273H p53 mutant GBM cell lines, and found that miR-34a influences the broad spectrum of 53BP1-mediated DNA damage response. It escalates both post-irradiation and endogenous DNA damage, abrogates radiation-induced G 2/M arrest and drastically increases the number of irradiated cells undergoing mitotic catastrophe. Furthermore, miR-34a downregulates 53BP1 and inhibits its recruitment to the sites of DNA double-strand breaks. We conclude that whereas miR-34a counteracts DNA repair, it also contributes to the p53-independent elimination of distressed cells, thus preventing the rise of genomic instability in tumor cell populations. These properties of miR-34a can potentially be exploited for DNA damage-effecting therapies of malignancies.


Asunto(s)
Daño del ADN , MicroARNs/metabolismo , Mitosis , Apoptosis , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Mutación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA