Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 14(1): 43-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738187

RESUMEN

INTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Adulto , Apolipoproteínas E/genética , Atrofia/etiología , Atrofia/patología , Encéfalo/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Estadísticas no Paramétricas , Factores de Tiempo
2.
Hippocampus ; 27(3): 249-262, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27933676

RESUMEN

This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI. CSF Aß42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aß42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Envejecimiento/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Atrofia/diagnóstico por imagen , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Fragmentos de Péptidos/líquido cefalorraquídeo
3.
Neuroimage ; 104: 366-72, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25255942

RESUMEN

Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0. For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we find a high correlation between SPM12 TIV and manual TIV (R(2)=0.940, 95% Confidence Interval (0.924, 0.953)), with a small mean difference (SPM12 40.4±35.4ml lower than manual, amounting to 2.8% of the overall mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a covariate) for SPM12 was significantly higher (p<0.001) than for either SPM8 (R(2)=0.577 CI (0.500, 0.644)) or FreeSurfer (R(2)=0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling approaches to adjust for TIV.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Anciano , Anciano de 80 o más Años , Algoritmos , Ensayos Clínicos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto
4.
Neuroimage ; 107: 46-53, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25481794

RESUMEN

Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips, whereas in GE and Siemens, the change had less impact on the mean atrophy rate (increase of 0.18% in GE and 0.049% in Siemens). Moving from non-accelerated baseline scans to accelerated scans for follow-up may have surprisingly little effect on computed atrophy rates depending on the exact sequence details and the scanner manufacturer; even accidentally inconsistent scans of this nature may still be useful.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/patología , Atrofia , Disfunción Cognitiva/patología , Estudios de Seguimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Enfermedades Neurodegenerativas/patología , Reproducibilidad de los Resultados
5.
Neuroimage ; 123: 149-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26275383

RESUMEN

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Atrofia , Interpretación Estadística de Datos , Femenino , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
6.
Hum Brain Mapp ; 36(12): 5123-36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26461053

RESUMEN

Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by predominant visual deficits and parieto-occipital atrophy, and is typically associated with Alzheimer's disease (AD) pathology. In AD, assessment of hippocampal atrophy is widely used in diagnosis, research, and clinical trials; its utility in PCA remains unclear. Given the posterior emphasis of PCA, we hypothesized that hippocampal shape measures may give additional group differentiation information compared with whole-hippocampal volume assessments. We investigated hippocampal volume and shape in subjects with PCA (n = 47), typical AD (n = 29), and controls (n = 48). Hippocampi were outlined on MRI scans and their 3D meshes were generated. We compared hippocampal volume and shape between disease groups. Mean adjusted hippocampal volumes were ∼ 8% smaller in PCA subjects (P < 0.001) and ∼ 22% smaller in tAD subject (P < 0.001) compared with controls. Significant inward deformations in the superior hippocampal tail were observed in PCA compared with controls even after adjustment for hippocampal volume. Inward deformations in large areas of the hippocampus were seen in tAD subjects compared with controls and PCA subjects, but only localized shape differences remained after adjusting for hippocampal volume. The shape differences observed, even allowing for volume differences, suggest that PCA and tAD are each associated with different patterns of hippocampal tissue loss that may contribute to the differential range and extent of episodic memory dysfunction in the two groups.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Corteza Cerebral/patología , Hipocampo/patología , Anciano , Atrofia/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
7.
Alzheimers Dement ; 11(7): 740-56, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26194310

RESUMEN

INTRODUCTION: Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS: We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS: Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION: Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/patología , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/complicaciones , Biomarcadores/líquido cefalorraquídeo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/historia , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Tomografía de Emisión de Positrones , Marcadores de Spin
8.
Alzheimers Dement ; 10(6): 602-608.e4, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25160042

RESUMEN

BACKGROUND: Rare TREM2 variants are significant risk factors for Alzheimer's disease (AD). METHODS: We used next generation sequencing of the whole gene (n = 700), exon 2 Sanger sequencing (n = 2634), p.R47H genotyping (n = 3518), and genome wide association study imputation (n = 13,048) to determine whether TREM2 variants are risk factors or phenotypic modifiers in patients with AD (n = 1002), frontotemporal dementia (n = 358), sporadic (n = 2500), and variant (n = 115) Creutzfeldt-Jakob disease (CJD). RESULTS: We confirm only p.R47H as a risk factor for AD (odds ratio or OR = 2.19; 95% confidence interval or CI = 1.04-4.51; P = .03). p.R47H does not significantly alter risk for frontotemporal dementia (OR = 0.81), variant or sporadic CJD (OR = 1.06 95%CI = 0.66-1.69) in our cohorts. Individuals with p.R47H associated AD (n = 12) had significantly earlier symptom onset than individuals with no TREM2 variants (n = 551) (55.2 years vs. 61.7 years, P = .02). We note that heterozygous p.R47H AD is memory led and otherwise indistinguishable from "typical" sporadic AD. CONCLUSION: We find p.R47H is a risk factor for AD, but not frontotemporal dementia or prion disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Arginina/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Histidina/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Encéfalo/patología , Estudios de Cohortes , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Exones/genética , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
9.
Alzheimer Dis Assoc Disord ; 27(2): 168-73, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22760170

RESUMEN

Hippocampal pathology occurs early in Alzheimer disease (AD), and atrophy, measured by volumes and volume changes, may predict which subjects will develop AD. Measures of the temporal horn (TH), which is situated adjacent to the hippocampus, may also indicate early changes in AD. Previous studies suggest that these metrics can predict conversion from amnestic mild cognitive impairment (MCI) to AD with conversion and volume change measured concurrently. However, the ability of these metrics to predict future conversion has not been investigated. We compared the abilities of hippocampal, TH, and global measures to predict future conversion from MCI to AD. TH, hippocampi, whole brain, and ventricles were measured using baseline and 12-month scans. Boundary shift integral was used to measure the rate of change. We investigated the prediction of conversion between 12 and 24 months in subjects classified as MCI from baseline to 12 months. All measures were predictive of future conversion. Local and global rates of change were similarly predictive of conversion. There was evidence that the TH expansion rate is more predictive than the hippocampal atrophy rate (P=0.023) and that the TH expansion rate is more predictive than the TH volume (P=0.036). Prodromal atrophy rates may be useful predictors of future conversion to sporadic AD from amnestic MCI.


Asunto(s)
Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Hipocampo/patología , Lóbulo Temporal/patología , Anciano , Anciano de 80 o más Años , Atrofia/patología , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pronóstico
10.
Neuroimage ; 59(4): 3995-4005, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22056457

RESUMEN

Brain atrophy measurement is increasingly important in studies of neurodegenerative diseases such as Alzheimer's disease (AD), with particular relevance to trials of potential disease-modifying drugs. Automated registration-based methods such as the boundary shift integral (BSI) have been developed to provide more precise measures of change from a pair of serial MR scans. However, when a method treats one image of the pair (typically the baseline) as the reference to which the other is compared, this systematic asymmetry risks introducing bias into the measurement. Recent concern about potential biases in longitudinal studies has led to several suggestions to use symmetric image registration, though some of these methods are limited to two time-points per subject. Therapeutic trials and natural history studies increasingly involve several serial scans, it would therefore be useful to have a method that can consistently estimate brain atrophy over multiple time-points. Here, we use the log-Euclidean concept of a within-subject average to develop affine registration and differential bias correction methods suitable for any number of time-points, yielding a longitudinally consistent multi-time-point BSI technique. Baseline, 12-month and 24-month MR scans of healthy controls, subjects with mild cognitive impairment and AD patients from the Alzheimer's Disease Neuroimaging Initiative are used for testing the bias in processing scans with different amounts of atrophy. Four tests are used to assess bias in brain volume loss from BSI: (a) inverse consistency with respect to ordering of pairs of scans 12 months apart; (b) transitivity consistency over three time-points; (c) randomly ordered back-to-back scans, expected to show no consistent change over subjects; and (d) linear regression of the atrophy rates calculated from the baseline and 12-month scans and the baseline and 24-month scans, where any additive bias should be indicated by a non-zero intercept. Results indicate that the traditional BSI processing pipeline does not exhibit significant bias due to its use of windowed sinc interpolation, but with linear interpolation and asymmetric registration, bias can be pronounced. Either improved interpolation or symmetric registration alone can greatly reduce this bias, and our proposed method combining both aspects shows no significant bias in any of the four experiments.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética , Anciano , Atrofia , Humanos , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo
11.
Neuroimage ; 59(3): 2362-73, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21945694

RESUMEN

Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834±0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781±0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Mapeo Encefálico/métodos , Computadores , Bases de Datos Factuales , Reacciones Falso Negativas , Reacciones Falso Positivas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados , Programas Informáticos , Adulto Joven
12.
Neuroimage ; 57(3): 856-65, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21640841

RESUMEN

Cortical thickness estimation performed in-vivo via magnetic resonance imaging is an important technique for the diagnosis and understanding of the progression of neurodegenerative diseases. Currently, two different computational paradigms exist, with methods generally classified as either surface or voxel-based. This paper provides a much needed comparison of the surface-based method FreeSurfer and two voxel-based methods using clinical data. We test the effects of computing regional statistics using two different atlases and demonstrate that this makes a significant difference to the cortical thickness results. We assess reproducibility, and show that FreeSurfer has a regional standard deviation of thickness difference on same day scans that is significantly lower than either a Laplacian or Registration based method and discuss the trade off between reproducibility and segmentation accuracy caused by bending energy constraints. We demonstrate that voxel-based methods can detect similar patterns of group-wise differences as well as FreeSurfer in typical applications such as producing group-wise maps of statistically significant thickness change, but that regional statistics can vary between methods. We use a Support Vector Machine to classify patients against controls and did not find statistically significantly different results with voxel based methods compared to FreeSurfer. Finally we assessed longitudinal performance and concluded that currently FreeSurfer provides the most plausible measure of change over time, with further work required for voxel based methods.


Asunto(s)
Enfermedad de Alzheimer/patología , Mapeo Encefálico/métodos , Encéfalo/patología , Demencia Frontotemporal/patología , Interpretación de Imagen Asistida por Computador/métodos , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados
13.
Neuroimage ; 55(3): 1091-108, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21195780

RESUMEN

Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any suboptimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T(1)-weighted MR baseline images from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p<0.05, all tests), and the 1st to 99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans ( p<0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤0.010% for 1.5T scans and ≤0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p<0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Enfermedad de Alzheimer/patología , Artefactos , Atlas como Asunto , Atrofia , Encéfalo/patología , Bases de Datos Factuales , Procesamiento Automatizado de Datos , Humanos , Imagen por Resonancia Magnética
14.
Neuroimage ; 50(2): 516-23, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20034579

RESUMEN

We describe an improved method of measuring brain atrophy rates from serial MRI for multi-site imaging studies of Alzheimer's disease (AD). The method (referred to as KN-BSI) improves an existing brain atrophy measurement technique-the boundary shift integral (classic-BSI), by performing tissue-specific intensity normalization and parameter selection. We applied KN-BSI to measure brain atrophy rates of 200 normal and 141 AD subjects using baseline and 1-year MRI scans downloaded from the Alzheimer's Disease Neuroimaging Initiative database. Baseline and repeat images were reviewed as pairs by expert raters and given quality scores. Including all image pairs, regardless of quality score, mean KN-BSI atrophy rates were 0.09% higher (95% CI 0.03% to 0.16%, p=0.007) than classic-BSI rates in controls and 0.07% higher (-0.01% to 0.16%, p=0.07) higher in ADs. The SD of the KN-BSI rates was 22% lower (15% to 29%, p<0.001) in controls and 13% lower (6% to 20%, p=0.001) in ADs, compared to classic-BSI. Using these results, the estimated sample size (needed per treatment arm) for a hypothetical trial of a treatment for AD (80% power, 5% significance to detect a 25% reduction in atrophy rate) would be reduced from 120 to 81 (a 32% reduction, 95% CI=18% to 45%, p<0.001) when using KN-BSI instead of classic-BSI. We concluded that KN-BSI offers more robust brain atrophy measurement than classic-BSI and substantially reduces sample sizes needed in clinical trials.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Atrofia/patología , Humanos
15.
Neuroimage ; 51(4): 1345-59, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20230901

RESUMEN

Volume and change in volume of the hippocampus are both important markers of Alzheimer's disease (AD). Delineation of the structure on MRI is time-consuming and therefore reliable automated methods are required. We describe an improvement (multiple-atlas propagation and segmentation (MAPS)) to our template library-based segmentation technique. The improved technique uses non-linear registration of the best-matched templates from our manually segmented library to generate multiple segmentations and combines them using the simultaneous truth and performance level estimation (STAPLE) algorithm. Change in volume over 12months (MAPS-HBSI) was measured by applying the boundary shift integral using MAPS regions. Methods were developed and validated against manual measures using subsets from Alzheimer's Disease Neuroimaging Initiative (ADNI). The best method was applied to 682 ADNI subjects, at baseline and 12-month follow-up, enabling assessment of volumes and atrophy rates in control, mild cognitive impairment (MCI) and AD groups, and within MCI subgroups classified by subsequent clinical outcome. We compared our measures with those generated by Surgical Navigation Technologies (SNT) available from ADNI. The accuracy of our volumes was one of the highest reported (mean(SD) Jaccard Index 0.80(0.04) (N=30)). Both MAPS baseline volume and MAPS-HBSI atrophy rate distinguished between control, MCI and AD groups. Comparing MCI subgroups (reverters, stable and converters): volumes were lower and rates higher in converters compared with stable and reverter groups (p< or =0.03). MAPS-HBSI required the lowest sample sizes (78 subjects) for a hypothetical trial. In conclusion, the MAPS and MAPS-HBSI methods give accurate and reliable volumes and atrophy rates across the clinical spectrum from healthy aging to AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Trastornos del Conocimiento/patología , Hipocampo/patología , Algoritmos , Anatomía Transversal , Automatización , Interpretación Estadística de Datos , Progresión de la Enfermedad , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados , Tamaño de la Muestra
16.
Eur Radiol ; 20(3): 674-82, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19760240

RESUMEN

OBJECTIVE: To assess the relationship between MRI-derived changes in whole-brain and ventricular volume with change in cognitive scores in Alzheimer's disease (AD), mild cognitive impairment (MCI) and control subjects. MATERIAL AND METHODS: In total 131 control, 231 MCI and 99 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with T1-weighted volumetric MRIs from baseline and 12-month follow-up were used to derive volume changes. Mini mental state examination (MMSE), Alzheimer's disease assessment scale (ADAS)-cog and trails test changes were calculated over the same period. RESULTS: Brain atrophy rates and ventricular enlargement differed between subject groups (p < 0.0005) and in MCI and AD were associated with MMSE changes. Both measures were additionally associated with ADAS-cog and trails-B in MCI patients, and ventricular expansion was associated with ADAS-cog in AD patients. Brain atrophy (p < 0.0005) and ventricular expansion rates (p = 0.001) were higher in MCI subjects who progressed to AD within 12 months of follow-up compared with MCI subjects who remained stable. MCI subjects who progressed to AD within 12 months had similar atrophy rates to AD subjects. CONCLUSION: Whole-brain atrophy rates and ventricular enlargement differed between patient groups and healthy controls, and tracked disease progression and psychological decline, demonstrating their relevance as biomarkers.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Encéfalo/patología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Femenino , Humanos , Masculino , Tamaño de los Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Neuroimage ; 47(4): 1506-13, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19477282

RESUMEN

Rates of brain atrophy derived from serial magnetic resonance (MR) studies may be used to assess therapies for Alzheimer's disease (AD). These measures may be confounded by changes in scanner voxel sizes. For this reason, the Alzheimer's Disease Neuroimaging Initiative (ADNI) included the imaging of a geometric phantom with every scan. This study compares voxel scaling correction using a phantom with correction using a 9 degrees of freedom (9DOF) registration algorithm. We took 129 pairs of baseline and 1-year repeat scans, and calculated the volume scaling correction, previously measured using the phantom. We used the registration algorithm to quantify any residual scaling errors, and found the algorithm to be unbiased, with no significant (p=0.97) difference between control (n=79) and AD subjects (n=50), but with a mean (SD) absolute volume change of 0.20 (0.20) % due to linear scalings. 9DOF registration was shown to be comparable to geometric phantom correction in terms of the effect on atrophy measurement and unbiased with respect to disease status. These results suggest that the additional expense and logistic effort of scanning a phantom with every patient scan can be avoided by registration-based scaling correction. Furthermore, based upon the atrophy rates in the AD subjects in this study, sample size requirements would be approximately 10-12% lower with (either) correction for voxel scaling than if no correction was used.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Técnica de Sustracción , Algoritmos , Estudios de Cohortes , Humanos , Imagen por Resonancia Magnética/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Neuroimage ; 47(4): 1659-65, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19523522

RESUMEN

OBJECTIVE: Caudate atrophy rate measured from serial MRI is proposed as a biomarker of HD progression that may be of use in assessing putative disease-modifying agents. Manual measurement techniques are the most widely applied but are time-consuming. We describe and evaluate an automated technique based on a local registration and boundary shift integral (BSI) approach at the caudate-CSF and caudate-white matter boundaries; caudate boundary shift integral (CBSI). METHODS: Two-year caudate volume change was measured in controls, premanifest HD and early HD using the CBSI and compared with a detailed manual measure in terms of 1) raw caudate volume change, 2) group differentiation, 3) associations with clinical variables and 4) rater requirements. CBSI additivity was assessed by comparing measurements over a single scan pair (baseline-->2 years), with the sum of measurements from two scan pairs (baseline-->1 year-->2 years). RESULTS: Techniques produced comparable caudate volume change measurements, although CBSI under-reported by 0.04 ml relative to manual. Both techniques distinguished controls, premanifest and early HD with a stepwise increase in rates across groups. Higher rates (CBSI and manual) were associated with increased proximity to estimated disease onset but not clinical change scores. CBSI reduced rater requirements by 2/3 (2 h per subject) relative to manual for this three time-point investigation. CBSI measurements over one scan pair showed good agreement with the sum of measurements from two scan pairs. CONCLUSIONS: CBSI results were comparable to a manual measure but with reduced rater requirements. CBSI may be of use in large-scale studies of HD.


Asunto(s)
Encéfalo/patología , Núcleo Caudado/patología , Enfermedad de Huntington/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Adulto , Algoritmos , Inteligencia Artificial , Atrofia/patología , Humanos , Aumento de la Imagen/métodos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Neuroinformatics ; 15(2): 215-226, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28316055

RESUMEN

The aim of this study was to assess whether the use of accelerated MRI scans in place of non-accelerated scans influenced brain volume and atrophy rate measures in controls and subjects with mild cognitive impairment and Alzheimer's disease. We used data from 861 subjects at baseline, 573 subjects at 6 months and 384 subjects at 12 months from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We calculated whole-brain, ventricular and hippocampal atrophy rates using the k-means boundary shift integral (BSI). Scan quality was visually assessed and the proportion of good quality accelerated and non-accelerated scans compared. We also compared MMSE scores, vascular burden and age between subjects with poor quality scans with those with good quality scans. Finally, we estimated sample size requirements for a hypothetical clinical trial when using atrophy rates from accelerated scans and non-accelerated scans. No significant differences in whole-brain, ventricular and hippocampal volumes and atrophy rates were found between accelerated and non-accelerated scans. Twice as many non-accelerated scan pairs suffered from at least some motion artefacts compared with accelerated scan pairs (p ≤ 0.001), which may influence the BSI. Subjects whose accelerated scans had significant motion had a higher mean vascular burden and age (p ≤ 0.05) whilst subjects whose non-accelerated scans had significant motion had poorer MMSE scores (p ≤ 0.05). No difference in estimated sample size requirements was found when using accelerated vs. non-accelerated scans. Accelerated scans reduce scan time and are better tolerated. Therefore it may be advantageous to use accelerated over non-accelerated scans in clinical trials that use ADNI-type protocols, especially in more cognitively impaired subjects.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Atrofia/diagnóstico por imagen , Atrofia/etiología , Disfunción Cognitiva/patología , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Escalas de Valoración Psiquiátrica
20.
IEEE Trans Med Imaging ; 25(12): 1617-26, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17167996

RESUMEN

Recent innovations in drug therapies have made it highly desirable to obtain sensitive biomarkers of disease progression that can be used to quantify the performance of candidate disease modifying drugs. In order to measure potential image-based biomarkers of disease progression in an experimental model of rheumatoid arthritis (RA), we present two different methods to automatically quantify changes in a bone in in-vivo serial magnetic resonance (MR) images from the model. Both methods are based on rigid and nonrigid image registration to perform the analysis. The first method uses segmentation propagation to delineate a bone from the serial MR images giving a global measure of temporal changes in bone volume. The second method uses rigid body registration to determine intensity change within a bone, and then maps these into a reference coordinate system using nonrigid registration. This gives a local measure of temporal changes in bone lesion volume. We detected significant temporal changes in local bone lesion volume in five out of eight identified candidate bone lesion regions, and significant difference in local bone lesion volume between male and female subjects in three out of eight candidate bone lesion regions. But the global bone volume was found to be fluctuating over time. Finally, we compare our findings with histology of the subjects and the manual segmentation of bone lesions.


Asunto(s)
Articulación del Tobillo/patología , Artritis Reumatoide/patología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Algoritmos , Animales , Inteligencia Artificial , Progresión de la Enfermedad , Femenino , Almacenamiento y Recuperación de la Información/métodos , Masculino , Ratas , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA