RESUMEN
Asthma is a common chronic disease amongst children. Epidemiological studies showed that the mortality rate of asthma in children is still high worldwide. Asthma control is therefore essential to minimize asthma exacerbations, which can be fatal if the condition is poorly controlled. Frequent monitoring could help to detect asthma progression and ensure treatment effectiveness. Although subjective asthma monitoring tools are available, the results vary as they rely on patients' self-perception. Emerging evidence suggests several objective tools could have the potential for monitoring purposes. However, there is no consensus to standardise the use of objective monitoring tools. In this review, we start with the prevalence and severity of childhood asthma worldwide. Then, we detail the latest available objective monitoring tools, focusing on their effectiveness in paediatric asthma management. Publications of spirometry, fractional exhaled nitric oxide (FeNO), hyperresponsiveness tests and electronic monitoring devices (EMDs) between 2016 and 2023 were included. The potential advantages and limitations of each tool were also discussed. Overall, this review provides a summary for researchers dedicated to further improving objective paediatric asthma monitoring and provides insights for clinicians to incorporate different objective monitoring tools in clinical practices.
Asunto(s)
Asma , Humanos , Asma/diagnóstico , Asma/terapia , Asma/fisiopatología , Asma/epidemiología , Niño , Espirometría/métodos , Monitoreo Fisiológico/métodos , Manejo de la Enfermedad , Prueba de Óxido Nítrico Exhalado Fraccionado/métodosRESUMEN
Peroxisomes are essential for mitochondrial health, as the absence of peroxisomes leads to altered mitochondria. However, it is unclear whether the changes in mitochondria are a function of preserving cellular function or a response to cellular damage caused by the absence of peroxisomes. To address this, we developed conditional hepatocyte-specific Pex16 deficient (Pex16 KO) mice that develop peroxisome loss and subjected them to a low-protein diet to induce metabolic stress. Loss of PEX16 in hepatocytes led to increased biogenesis of small mitochondria and reduced autophagy flux but with preserved capacity for respiration and ATP capacity. Metabolic stress induced by low protein feeding led to mitochondrial dysfunction in Pex16 KO mice and impaired biogenesis. Activation of PPARα partially corrected these mitochondrial disturbances, despite the absence of peroxisomes. The findings of this study demonstrate that the absence of peroxisomes in hepatocytes results in a concerted effort to preserve mitochondrial function, including increased mitochondrial biogenesis, altered morphology, and modified autophagy activity. Our study underscores the relationship between peroxisomes and mitochondria in regulating the hepatic metabolic responses to nutritional stressors.
Asunto(s)
Biogénesis de Organelos , Peroxisomas , Ratones , Animales , Peroxisomas/metabolismo , Mitocondrias/metabolismo , Hígado/metabolismo , AutofagiaRESUMEN
OBJECTIVES: To describe the factors affecting critical care capacity and how critical care organizations (CCOs) within academic centers in the U.S. flow-size critical care resources under normal operations, strain, and surge conditions. DATA SOURCES: PubMed, federal agency and American Hospital Association reports, and previous CCO survey results were reviewed. STUDY SELECTION: Studies and reports of critical care bed capacity and utilization within CCOs and in the United States were selected. DATA EXTRACTION: The Academic Leaders in the Critical Care Medicine Task Force established regular conference calls to reach a consensus on the approach of CCOs to "flow-sizing" critical care services. DATA SYNTHESIS: The approach of CCOs to "flow-sizing" critical care is outlined. The vertical (relation to institutional resources, e.g., space allocation, equipment, personnel redistribution) and horizontal (interdepartmental, e.g., emergency department, operating room, inpatient floors) integration of critical care delivery (ICUs, rapid response) for healthcare organizations and the methods by which CCOs flow-size critical care during normal operations, strain, and surge conditions are described. The advantages, barriers, and recommendations for the rapid and efficient scaling of critical care operations via a CCO structure are explained. Comprehensive guidance and resources for the development of "flow-sizing" capability by a CCO within a healthcare organization are provided. CONCLUSIONS: We identified and summarized the fundamental principles affecting critical care capacity. The taskforce highlighted the advantages of the CCO governance model to achieve rapid and cost-effective "flow-sizing" of critical care services and provide recommendations and resources to facilitate this capability. The relevance of a comprehensive approach to "flow-sizing" has become particularly relevant in the wake of the latest COVID-19 pandemic. In light of the growing risks of another extreme epidemic, planning for adequate capacity to confront the next critical care crisis is urgent.
Asunto(s)
Cuidados Críticos , Pandemias , Estados Unidos , Humanos , Unidades de Cuidados Intensivos , Atención a la Salud , Servicio de Urgencia en HospitalRESUMEN
BACKGROUND: Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS: Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS: L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1ß, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION: L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT: The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.
Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Neumonía , Humanos , Recién Nacido , Femenino , Embarazo , Animales , Ratas , Animales Recién Nacidos , Displasia Broncopulmonar/metabolismo , Lipopolisacáridos/farmacología , Citrulina/farmacología , Citrulina/metabolismo , Pulmón , Neumonía/metabolismo , Inflamación/metabolismo , Modelos Animales de EnfermedadRESUMEN
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Asunto(s)
Infecciones Bacterianas , Infecciones del Sistema Respiratorio , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos , Bacterias , Pulmón , Infecciones del Sistema Respiratorio/tratamiento farmacológicoRESUMEN
In this work, by capping a macrolactam ring at the C-terminus of a de novo-designed peptide, namely zp80, we have constructed a small peptide library via the solid phase peptide synthesis for screening. Eight peptides bearing different aspartic acid-rich macrolactam rings but the same linear (IIRR)4 unit exhibited improved antibacterial activities, hemolytic activity, and selectivity index. Mechanistic studies revealed that they could destroy the integrity of bacterial envelope, leading to cytoplasm leakage and rapid dissipation of membrane potential. One of these peptides, zp90 with a macrolactam ring of (KaDGD), demonstrated preferential interaction with calcium ions at a stoichiometric ratio of 1:1, promoting the affinity of designed peptides to bacterial membrane. Overall, this work provides a feasible strategy for medicinal chemists to further develop potent, selective, and multifunctional de novo-designed antimicrobial peptides.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Péptidos Catiónicos Antimicrobianos/farmacología , Relación Estructura-Actividad , Antibacterianos/farmacología , BacteriasRESUMEN
OBJECTIVES: The Society of Critical Care Medicine convened its Academic Leaders in Critical Care Medicine taskforce on February 22, 2016, during the 45th Critical Care Congress to develop a series of consensus papers with toolkits for advancing critical care organizations in North America. The goal of this article is to propose a framework based on the expert opinions of critical care organization leaders and their responses to a survey, for current and future critical care organizations, and their leadership in the health system to design and implement successful regionalization for critical care in their regions. DATA SOURCES AND STUDY SELECTION: Members of the workgroup convened monthly via teleconference with the following objectives: to 1) develop and analyze a regionalization survey tool for 23 identified critical care organizations in the United States, 2) assemble relevant medical literature accessed using Medline search, 3) use a consensus of expert opinions to propose the framework, and 4) create groups to write the subsections and assemble the final product. DATA EXTRACTION AND SYNTHESIS: The most prevalent challenges for regionalization in critical care organizations remain a lack of a strong central authority to regulate and manage the system as well as a lack of necessary infrastructure, as described more than a decade ago. We provide a framework and outline a nontechnical approach that the health system and their critical care medicine leadership can adopt after considering their own structure, complexity, business operations, culture, and the relationships among their individual hospitals. Transforming the current state of regionalization into a coordinated, accountable system requires a critical assessment of administrative and clinical challenges and barriers. Systems thinking, business planning and control, and essential infrastructure development are critical for assisting critical care organizations. CONCLUSIONS: Under the value-based paradigm, the goals are operational efficiency and patient outcomes. Health systems that can align strategy and operations to assist the referral hospitals with implementing regionalization will be better positioned to regionalize critical care effectively.
Asunto(s)
Cuidados Críticos/organización & administración , Planificación de Instituciones de Salud/organización & administración , Eficiencia Organizacional , Humanos , Liderazgo , Derivación y Consulta/organización & administración , Análisis de Sistemas , Telemedicina/organización & administración , Resultado del Tratamiento , Estados UnidosRESUMEN
Facing the increasing threat of multi-drug antimicrobial resistance (AMR), humans strive to search for antibiotic drug candidates and antibacterial alternatives from all possible places, from soils in remote areas to deep in the sea. In this "gold rush for antibacterials," researchers turn to the natural enemy of bacterial cells, bacteriophage (phages), and find them a rich source of weapons for AMR bacteria. Endolysins (lysins), the enzymes phages use to break the bacterial cells from within, have been shown to be highly selective and efficient in killing their target bacteria from outside while maintaining a low occurrence of bacterial resistance. In this review, we start with the structures and mechanisms of action of lysins against Gram-positive (GM+) bacteria. The developmental history of lysins is also outlined. Then, we detail the latest preclinical and clinical research on their safety and efficacy against GM+ bacteria, focusing on the formulation strategies of these enzymes. Finally, the challenges and potential hurdles are discussed. Notwithstanding these limitations, the trends in development indicate that the first, approved lysin drugs will be available soon in the near future. Overall, this review presents a timely summary of the current progress on lysins as antibacterial enzymes for AMR GM+ bacteria, and provides a guidebook for biomaterial researchers who are dedicating themselves to the battle against bacterial infections.
Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Antibacterianos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Bacterias Grampositivas , HumanosRESUMEN
OBJECTIVE: New, value-based regulations and reimbursement structures are creating historic care management challenges, thinning the margins and threatening the viability of hospitals and health systems. The Society of Critical Care Medicine convened a taskforce of Academic Leaders in Critical Care Medicine on February 22, 2016, during the 45th Critical Care Congress to develop a toolkit drawing on the experience of successful leaders of critical care organizations in North America for advancing critical care organizations (Appendix 1). The goal of this article was to provide a roadmap and call attention to key factors that adult critical care medicine leadership in both academic and nonacademic setting should consider when planning for value-based care. DESIGN: Relevant medical literature was accessed through a literature search. Material published by federal health agencies and other specialty organizations was also reviewed. Collaboratively and iteratively, taskforce members corresponded by electronic mail and held monthly conference calls to finalize this report. SETTING: The business and value/performance critical care organization building section comprised of leaders of critical care organizations with expertise in critical care administration, healthcare management, and clinical practice. MEASUREMENTS AND MAIN RESULTS: Two phases of critical care organizations care integration are described: "horizontal," within the system and regionalization of care as an initial phase, and "vertical," with a post-ICU and postacute care continuum as a succeeding phase. The tools required for the clinical and financial transformation are provided, including the essential prerequisites of forming a critical care organization; the manner in which a critical care organization can help manage transformational domains is considered. Lastly, how to achieve organizational health system support for critical care organization implementation is discussed. CONCLUSIONS: A critical care organization that incorporates functional clinical horizontal and vertical integration for ICU patients and survivors, aligns strategy and operations with those of the parent health system, and encompasses knowledge on finance and risk will be better positioned to succeed in the value-based world.
Asunto(s)
Centros Médicos Académicos/organización & administración , Cuidados Críticos/organización & administración , Federación para Atención de Salud/organización & administración , Liderazgo , Adulto , Control de Costos , Atención a la Salud/economía , Atención a la Salud/organización & administración , Humanos , Comunicación Interdisciplinaria , Colaboración Intersectorial , Seguridad del Paciente/economía , Garantía de la Calidad de Atención de Salud/economía , Garantía de la Calidad de Atención de Salud/organización & administración , Mecanismo de Reembolso/organización & administración , Sociedades Médicas , Estados Unidos , Seguro de Salud Basado en Valor/economía , Seguro de Salud Basado en Valor/organización & administraciónRESUMEN
PURPOSE: To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. METHODS: Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log10(pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. RESULTS: Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log10(pfu/mL). Active phage delivery rate was significantly greater (p < 0.01) for the vibrating mesh nebulizer (3.3x108 ± 0.8x108 pfu/min) than for the jet nebulizer (5.4x104 ± 1.3x104 pfu/min). The soft mist inhaler delivered 4.6x106 ± 2.0x106 pfu per 11.6 ± 1.6 µL ex-actuator dose. CONCLUSIONS: Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.
Asunto(s)
Bacteriófagos , Nebulizadores y Vaporizadores , Tuberculosis/terapia , Administración por Inhalación , Aerosoles/química , Animales , Liberación de Fármacos , Estabilidad de Medicamentos , Diseño de Equipo/métodos , Equipos y Suministros , Humanos , Terapia de FagosRESUMEN
PURPOSE: Previously, a respirable powder (RP) formulation of pirfenidone (PFD) was developed for reducing phototoxic risk; however, PFD-RP demonstrated unacceptable in vitro inhalation performance. The present study aimed to develop a new RP system of PFD with favorable inhalation properties by spray-drying method. METHODS: Spray-dried PFD (SD/PFD) was prepared by spray-drying with L-leucine, and the physicochemical properties and efficacy in an antigen-sensitized airway inflammation model were assessed. A pharmacokinetic study was also conducted after intratracheal and oral administration of PFD formulations. RESULTS: Regarding powder characterization, SD/PFD had dimpled surface with the mean diameter of 1.793 µm. In next generation impactor analysis, SD/PFD demonstrated high in vitro inhalation performance without the need of carrier particles, and the fine particle fraction of SD/PFD was calculated to be 62.4%. Insufflated SD/PFD (0.3 mg-PFD/rat) attenuated antigen-evoked inflammatory events in the lung, including infiltration of inflammatory cells and myeloperoxidase activity. Systemic exposure level of PFD after insufflation of SD/PFD at the pharmacologically effective dose was 600-fold lower than that after oral administration of PFD at the phototoxic dose. CONCLUSION: SD/PFD would be suitable for inhalation, and the utilization of an RP system with SD/PFD would provide a safer medication compared with oral administration of PFD.
Asunto(s)
Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Desecación , Neumonía/prevención & control , Piridonas/administración & dosificación , Piridonas/farmacocinética , Tecnología Farmacéutica/métodos , Administración por Inhalación , Administración Oral , Aerosoles , Animales , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Líquido del Lavado Bronquioalveolar/inmunología , Cromatografía Liquida , Modelos Animales de Enfermedad , Composición de Medicamentos , Masculino , Ovalbúmina , Tamaño de la Partícula , Peroxidasa/metabolismo , Neumonía/sangre , Neumonía/inducido químicamente , Neumonía/inmunología , Polvos , Piridonas/química , Piridonas/toxicidad , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
PURPOSE: To investigate the applicability of Bipolar Charge Analyzer (BOLAR), a new commercial instrument developed by Dekati Ltd., in simultaneously characterizing the bipolar electrostatic charge profile and measuring the size distribution of commercial metered dose inhalers (MDIs). METHODS: Intal Forte(®) (sodium cromoglycate), Tilade(®) (nedocromil sodium), Ventolin(®) (salbutamol sulphate), and QVAR(®) (beclomethasone dipropionate) were used as model MDIs in this study. Three individual actuations of each MDI were introduced into the BOLAR at an air flow rate of 60 l/min. Charge and mass profiles for each actuation were determined. RESULTS: The BOLAR was found to have better performance in collecting valid charge data (≥80%) than valid mass data (≥50%). In all tested products, both positively and negatively charged particles were found in five defined size fractions between zero and 11.6 µm, with the charge magnitude decreased with increasing particle size. The net charge profiles obtained from the BOLAR qualitatively agreed with the results reported previously. In all suspension type MDIs, negligible masses were detected in the smallest size fraction (<0.95 µm), for which the charge was most likely caused by the propellant and excipients. QVAR was the only solution MDI tested and the charge and mass profiles were significantly different from the suspension-type MDIs. Its mass profile was found to follow closely with the charge profile. CONCLUSIONS: Positively and negatively charged MDI particles of different size fractions and their corresponding charge-to-mass profiles were successfully characterized by the BOLAR.
Asunto(s)
Aerosoles/química , Inhaladores de Dosis Medida , Albuterol/química , Antiasmáticos/química , Beclometasona/química , Broncodilatadores/química , Química Farmacéutica/instrumentación , Cromolin Sódico/química , Diseño de Equipo , Humanos , Nedocromil/química , Tamaño de la Partícula , Electricidad EstáticaRESUMEN
PURPOSE: The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. METHOD: A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. RESULTS: A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). CONCLUSION: Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.
Asunto(s)
Liofilización/métodos , Pulmón/virología , Terapia de Fagos/métodos , Podoviridae/patogenicidad , Infecciones por Pseudomonas/terapia , Pseudomonas/virología , Infecciones del Sistema Respiratorio/terapia , Administración por Inhalación , Aerosoles , Leucina/química , Pulmón/microbiología , Manitol/química , Viabilidad Microbiana , Nebulizadores y Vaporizadores , Polvos , Pseudomonas/patogenicidad , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/virología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Trehalosa/química , UltrasonidoRESUMEN
INTRODUCTION: The rising prevalence of rapid response teams has led to a demand for risk-stratification tools that can estimate a ward patient's risk of clinical deterioration and subsequent need for intensive care unit (ICU) admission. Finding such a risk-stratification tool is crucial for maximizing the utility of rapid response teams. This study compares the ability of nine risk prediction scores in detecting clinical deterioration among non-ICU ward patients. We also measured each score serially to characterize how these scores changed with time. METHODS: In a retrospective nested case-control study, we calculated nine well-validated prediction scores for 328 cases and 328 matched controls. Our cohort included non-ICU ward patients admitted to the hospital with a diagnosis of infection, and cases were patients in this cohort who experienced clinical deterioration, defined as requiring a critical care consult, ICU admission, or death. We then compared each prediction score's ability, over the course of 72 hours, to discriminate between cases and controls. RESULTS: At 0 to 12 hours before clinical deterioration, seven of the nine scores performed with acceptable discrimination: Sequential Organ Failure Assessment (SOFA) score area under the curve of 0.78, Predisposition/Infection/Response/Organ Dysfunction Score of 0.76, VitalPac Early Warning Score of 0.75, Simple Clinical Score of 0.74, Mortality in Emergency Department Sepsis of 0.74, Modified Early Warning Score of 0.73, Simplified Acute Physiology Score II of 0.73, Acute Physiology and Chronic Health Evaluation II of 0.72, and Rapid Emergency Medicine Score of 0.67. By measuring scores over time, it was found that average SOFA scores of cases increased as early as 24 to 48 hours prior to deterioration (P = 0.01). Finally, a clinical prediction rule which also accounted for the change in SOFA score was constructed and found to perform with a sensitivity of 75% and a specificity of 72%, and this performance is better than that of any SOFA scoring model based on a single set of physiologic variables. CONCLUSIONS: ICU- and emergency room-based prediction scores can also be used to prognosticate risk of clinical deterioration for non-ICU ward patients. In addition, scoring models that take advantage of a score's change over time may have increased prognostic value over models that use only a single set of physiologic measurements.
Asunto(s)
Cuidados Críticos , Indicadores de Salud , Medición de Riesgo/métodos , APACHE , Anciano , Estudios de Casos y Controles , Servicio de Urgencia en Hospital , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Estudios RetrospectivosRESUMEN
Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics.
Asunto(s)
Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Pulmón/metabolismo , Tecnología Farmacéutica/instrumentación , Tecnología Farmacéutica/métodos , Administración por Inhalación , Química Farmacéutica/instrumentación , Inhaladores de Polvo Seco/instrumentación , Inhaladores de Polvo Seco/métodos , HumanosRESUMEN
Host cell invasion with strong antibiotics evading is a major feature of respiratory Staphylococcus aureus infections with severe recurrence. Bacteriophage (phage) therapy and design of liposomal phage to target intracellular pathogens have been described recently. The practicality for pulmonary delivery of liposomal phage, and how formulation compositions affecting the aerosolization and intracellular bacterial killing remain unexplored. In the present study, three commonly used phospholipids (SPC, EPC, and HSPC) were selected to investigate their ability for phage K nebulization and intracellular therapy in the form of liposome-phage nanocomplexes. The three lipid nanocarriers showed protection on phage K upon mesh nebulization and the pulmonary deposition efficiency was influenced by the lipid used. Moreover, the intracellular bacterial killing was strongly depended on the lipid types, where EPC-phage exhibited the best killing performance with no relapsing. Phage K with the aid of EPC liposomes was also observed to manage the tissue infection in a 3D spheroid model more effectively than other groups. Altogether, this novel EPC liposome-phage nanocomplex can be a promising formulation approach that enables inhalable phage to manage respiratory infections caused by bacteria strongly associated with human epithelial cells.
Asunto(s)
Técnicas de Cocultivo , Células Epiteliales , Liposomas , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/virología , Humanos , Células Epiteliales/virología , Fosfolípidos/química , Bacteriófagos , Infecciones Estafilocócicas , Administración por Inhalación , Nanopartículas , Nebulizadores y VaporizadoresRESUMEN
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Asunto(s)
Antibacterianos , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Relación Estructura-Actividad , Humanos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacologíaRESUMEN
Endolysins (lysins), a novel class of antibacterial agents derived from bacteriophages, efficiently lyse bacteria by degrading the peptidoglycan layer within the bacterial wall. Colistin, a classic peptide antibiotic with the ability to permeabilize the outer membrane, has recently shown great promise in synergizing with lysins against gram-negative bacteria. However, the exact mechanisms responsible for their synergy remain unclear. Here, we first demonstrated the synergistic bacterial killing of various lysin and colistin combinations. With a model lysin, LysAB2, we then confirmed that there is a threshold concentration of colistin causing sufficient permeabilization of the outer membrane for lysin to access the peptidoglycan layer and subsequently exert its lytic ability. The threshold colistin concentrations were found to range 0.2-0.8 µM for the tested bacteria, with the exact value largely depending on the density of lipopolysaccharides on the outer membrane. Beyond the threshold colistin level, LysAB2 could synergize with colistin at a concentration as low as 0.31 µM. Next, we proved for the first time that lysin-induced degradation of the peptidoglycan layer facilitated the disruption of cytoplasmic membrane by colistin, elevated the level of reactive oxygen species in bacterial cells, and boosted the killing effect of colistin. Additionally, the colistin-lysin combination could effectively eliminate established biofilms due to the biofilm dispersal ability of lysin. The in-vivo efficacy was preliminary confirmed in a Galleria mellonella infection model for combination with colistin doses (≥ 1.8 µg/larvae), which could reach beyond the threshold concentration, and a fixed LysAB2 dose (10 µg/larvae). In summary, our study provided the first experimental evidence unravelling the mechanisms behind the synergy of colistin and lysins. All these findings provided important insights in guiding the dosing strategy for applying this combination in future development.
Asunto(s)
Antibacterianos , Colistina , Farmacorresistencia Bacteriana Múltiple , Endopeptidasas , Bacterias Gramnegativas , Colistina/farmacología , Endopeptidasas/farmacología , Sinergismo Farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Línea CelularRESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.