Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 101(1): 204-216, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529521

RESUMEN

C4 photosynthetic plants have evolved from C3 ancestors and are characterized by differential expression of several hundred genes. Strict compartmentalization of key C4 enzymes either to mesophyll (M) or bundle sheath cells is considered a crucial step towards the evolution of C4 photosynthesis. In this study, we demonstrate that the 5'-flanking sequences of the C4 type phosphoenolpyruvate carboxylase (Ppc) gene from three C4 grass species could drive M-cell-specific expression of a reporter gene in rice. In addition to that, we identified about 450 bp (upstream of their transcription start site) of the analyzed C4 Ppc promoters contain all the essential regulatory elements for driving M-cell-specific expression in rice leaves. Importantly, four motifs of conserved nucleotide sequences (CNSs) were also determined, which are essential for the activity of the promoter. A putative interaction between the CNSs and an unknown upstream element(s) is required for driving M-cell-specific expression. This work identifies the evolutionary conservation of C4 Ppc regulatory mechanisms of multiple closely related C4 grass species.


Asunto(s)
Células del Mesófilo/metabolismo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
2.
J Exp Bot ; 70(2): 575-587, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30357386

RESUMEN

Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C4 plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C4 plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C4 photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C3 plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.


Asunto(s)
Flaveria/metabolismo , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Plantas Modificadas Genéticamente
3.
J Exp Bot ; 67(10): 2977-88, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26951371

RESUMEN

Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.


Asunto(s)
Producción de Cultivos/métodos , Ingeniería Genética/métodos , Fotosíntesis/genética , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Desarrollo de la Planta/genética , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA