Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 54(4): 829-844.e5, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33705706

RESUMEN

Memory T cells are thought to rely on oxidative phosphorylation and short-lived effector T cells on glycolysis. Here, we investigated how T cells arrive at these states during an immune response. To understand the metabolic state of rare, early-activated T cells, we adapted mass cytometry to quantify metabolic regulators at single-cell resolution in parallel with cell signaling, proliferation, and effector function. We interrogated CD8+ T cell activation in vitro and in response to Listeria monocytogenes infection in vivo. This approach revealed a distinct metabolic state in early-activated T cells characterized by maximal expression of glycolytic and oxidative metabolic proteins. Cells in this transient state were most abundant 5 days post-infection before rapidly decreasing metabolic protein expression. Analogous findings were observed in chimeric antigen receptor (CAR) T cells interrogated longitudinally in advanced lymphoma patients. Our study demonstrates the utility of single-cell metabolic analysis by mass cytometry to identify metabolic adaptations of immune cell populations in vivo and provides a resource for investigations of metabolic regulation of immune responses across a variety of applications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Transducción de Señal/inmunología , Animales , Proliferación Celular/fisiología , Femenino , Glucólisis/inmunología , Memoria Inmunológica/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa , Receptores Quiméricos de Antígenos/inmunología , Análisis de la Célula Individual/métodos
2.
Ann Surg Oncol ; 27(11): 4122-4130, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32488521

RESUMEN

BACKGROUND: The frequency of "exhausted" or checkpoint-positive (PD-1+CTLA-4+) cytotoxic lymphocytes (Tex) in the tumor microenvironment is associated with response to anti-PD-1 therapy in metastatic melanoma. The current study determined whether pretreatment Tex cells in locally advanced melanoma predicted response to neoadjuvant anti-PD-1 blockade. METHODS: Pretreatment tumor samples from 17 patients with locally advanced melanoma underwent flow cytometric analysis of pretreatment Tex and regulatory T cell frequency. Patients who met the criteria for neoadjuvant checkpoint blockade were treated with either PD-1 monotherapy or PD-1/CTLA-4 combination therapy. Best overall response was evaluated by response evaluation criteria in solid tumors version 1.1, with recurrence-free survival (RFS) calculated by the Kaplan-Meier test. The incidence and severity of adverse events were tabulated by clinicians using the National Cancer Institute Common Terminology Criteria for Adverse Events version 4. RESULTS: Of the neoadjuvant treated patients, 10 received anti-PD-1 monotherapy and 7 received anti-CTLA-4/PD-1 combination therapy. Of these 17 patients, 12 achieved a complete response, 4 achieved partial responses, and 1 exhibited stable disease. Surgery was subsequently performed for 11 of the 17 patients, and 8 attained a complete pathologic response. Median RFS and overall survival (OS) were not reached. Immune-related adverse events comprised four grade 3 or 4 events, including pneumonitis, transaminitis, and anaphylaxis. CONCLUSION: The results showed high rates of objective response, RFS, and OS for patients undergoing immune profile-directed neoadjuvant immunotherapy for locally advanced melanoma. Furthermore, the study showed that treatment stratification based upon Tex frequency can potentially limit the adverse events associated with combination immunotherapy. These data merit further investigation with a larger validation study.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Melanoma , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estimación de Kaplan-Meier , Melanoma/inmunología , Melanoma/terapia , Terapia Neoadyuvante , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral
4.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38386420

RESUMEN

The efficacy of chimeric antigen receptor T cell (CAR-T) therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28 EGFRvIII gliomas revealed impaired mitochondrial ATP production and a markedly hypoxic status compared with ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of the AMPK activator metformin and the mTOR inhibitor rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-γ coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective antiglioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28 EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group, with fewer Ly6c+CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions under in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.


Asunto(s)
Glioma , Microambiente Tumoral , Ratones , Humanos , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Encéfalo/metabolismo , Linfocitos T , Serina-Treonina Quinasas TOR/metabolismo
5.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014236

RESUMEN

The efficacy of chimeric antigen receptor (CAR)-T therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28-EGFRvIII glioma revealed impaired mitochondrial ATP production and a markedly hypoxic status compared to ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of AMPK activator Metformin and the mTOR inhibitor Rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-gamma coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective anti-glioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28-EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group with fewer Ly6c+ CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.

6.
JCI Insight ; 2(14)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28724802

RESUMEN

BACKGROUND: Programmed death 1 (PD-1) inhibition activates partially exhausted cytotoxic T lymphocytes (peCTLs) and induces tumor regression. We previously showed that the peCTL fraction predicts response to anti-PD-1 monotherapy. Here, we sought to correlate peCTL and regulatory T lymphocyte (Treg) levels with response to combination immunotherapy, and with demographic/disease characteristics, in metastatic melanoma patients. METHODS: Pretreatment melanoma samples underwent multiparameter flow cytometric analysis. Patients were treated with anti-PD-1 monotherapy or combination therapy, and responses determined by Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria. peCTL and Treg levels across demographic/disease variables were compared. Low versus high peCTL (≤20% vs. >20%) were defined from a previous study. RESULTS: One hundred and two melanoma patients were identified. The peCTL fraction was higher in responders than nonresponders. Low peCTL correlated with female sex and liver metastasis, but not with lactate dehydrogenase (LDH), tumor stage, or age. While overall response rates (ORRs) to anti-PD-1 monotherapy and combination therapy were similar in high-peCTL patients, low-peCTL patients given combination therapy demonstrated higher ORRs than those who received monotherapy. Treg levels were not associated with these factors nor with response. CONCLUSION: In melanoma, pretreatment peCTL fraction is reduced in women and in patients with liver metastasis. In low-peCTL patients, anti-PD-1 combination therapy is associated with significantly higher ORR than anti-PD-1 monotherapy. Fewer tumor-infiltrating peCTLs may be required to achieve response to combination immunotherapy. TRIAL REGISTRATION: UCSF IRB Protocol 138510FUNDING. NIH DP2-AR068130, K08-AR062064, AR066821, and Burroughs Wellcome CAMS-1010934 (M.D.R.). Amoroso and Cook Fund, and the Parker Institute for Cancer Immunotherapy (A.I.D.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA