Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(11): 4453-4463, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36284158

RESUMEN

Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = -0.40), educational attainment (years of schooling rg = -0.46) and reproductive traits (age at first birth rg = -0.58, father's age at death rg = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB.


Asunto(s)
Trastorno de Personalidad Antisocial , Trastorno de la Conducta , Animales , Ratones , Trastorno de Personalidad Antisocial/genética , Estudio de Asociación del Genoma Completo , Trastorno de la Conducta/genética , Trastorno de la Conducta/psicología , Agresión/psicología , Herencia Multifactorial/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
2.
Sci Rep ; 6: 34379, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27682269

RESUMEN

Dengue virus (DENV) is a mosquito-borne Flavivirus classified into four serotypes (DENV-1-4) that causes Dengue fever (DF), Dengue hemorrhagic Fever (DHF) or Dengue shock syndrome (DSS). An estimated 390 million people are at risk for infection with DENV and there are no effective vaccines or therapeutics. We utilized RNA chromatography coupled with quantitative mass spectrometry (qMS) to identify host RNA binding proteins (RBPs) that interact with DENV-2 RNA. We identified ERI3 (also PRNPIP and PINT1), a putative 3'-5' RNA exonuclease, which preferentially associates with DENV-2 genomic RNA via interactions with dumbbell structures in the 3' UTR. ERI3 is required for accumulation of DENV-2 genomic RNA and production of infectious particles. Furthermore, the mosquito homologue of ERI3 is required for DENV-2 replication in adult Aedes aegypti mosquitos implying that the requirement for ERI3 is conserved in both DENV hosts. In human cells ERI3 localizes to the Golgi in uninfected cells, but relocalizes near sites of DENV-2 replication in infected cells. ERI3 is not required for maintaining DENV-2 RNA stability or translation of the viral polyprotein, but is required for viral RNA synthesis. Our results define a specific role for ERI3 and highlight the importance of Golgi proteins in DENV-2 replication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA