Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468681

RESUMEN

Glacial landforms, including lobate debris aprons, are a global water ice reservoir on Mars preserving ice from past periods when high orbital obliquity permitted nonpolar ice accumulation. Numerous studies have noted morphological similarities between lobate debris aprons and terrestrial debris-covered glaciers, an interpretation supported by radar observations. On Earth and Mars, these landforms consist of a core of flowing ice covered by a rocky lag. Terrestrial debris-covered glaciers advance in response to climate forcing driven by obliquity-paced changes to ice mass balance. However, on Mars, it is not known whether glacial landforms emplaced over the past 300 to 800 formed during a single, long deposition event or during multiple glaciations. Here, we show that boulders atop 45 lobate debris aprons exhibit no evidence of monotonic comminution but are clustered into bands that become more numerous with increasing latitude, debris apron length, and pole-facing flow orientation. Boulder bands are prominent at glacier headwalls, consistent with debris accumulation during the current Martian interglacial. Terrestrial glacier boulder bands occur near flow discontinuities caused by obliquity-driven hiatuses in ice accumulation, forming internal debris layers. By analogy, we suggest that Martian lobate debris aprons experienced multiple cycles of ice deposition, followed by ice destabilization in the accumulation zone, leading to boulder-dominated lenses and subsequent ice deposition and continued flow. Correlation between latitude and boulder clustering suggests that ice mass-balance works across global scales on Mars. Lobate debris aprons may preserve ice spanning multiple glacial/interglacial cycles, extending Mars climate records back hundreds of millions of years.

2.
Data Brief ; 40: 107815, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35141365

RESUMEN

Data in this article are related to the research article "Rapid rounding of icy clasts during simulated fluvial transport in the Titan Tumbler". Whereas that research focused on low-temperature ice abrasion in the context of Saturn's moon Titan, the full dataset on experiments testing the breakdown of water ice under a variety of tested conditions is reported in this article. Following the work of previous terrestrial studies, these experiments utilize tumblers that produce collisions to simulate some aspects of mechanical weathering during fluvial transport. Data files publicly available on Mendeley Data include measures of mass and roundness of clasts of specific grain sizes as well as raw images, videos, and the MATLAB script used for analysis. In this article, the varying conditions of temperature, initial clast size, shape, ice type, number of clasts for each of the 42 experiments are reported, along with best-fit models of abrasion typically applied in terrestrial tumbler studies. This text describes the methodology, including the development of icy clasts, operation of the tumblers, measurement of clast properties, calculation of derived parameters, and application of abrasion models. Exploration of various approaches to tumbler development and data acquisition are reported to benefit future researchers in this area. Experiments on the abrasion of different materials benefit from cross-comparison, which is also a fundamental aspect of planetary science.

3.
Front Microbiol ; 12: 616730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584618

RESUMEN

Ice-free soils in the McMurdo Dry Valleys select for taxa able to cope with challenging environmental conditions, including extreme chemical water activity gradients, freeze-thaw cycling, desiccation, and solar radiation regimes. The low biotic complexity of Dry Valley soils makes them well suited to investigate environmental and spatial influences on bacterial community structure. Water tracks are annually wetted habitats in the cold-arid soils of Antarctica that form briefly each summer with moisture sourced from snow melt, ground ice thaw, and atmospheric deposition via deliquescence and vapor flow into brines. Compared to neighboring arid soils, water tracks are highly saline and relatively moist habitats. They represent a considerable area (∼5-10 km2) of the Dry Valley terrestrial ecosystem, an area that is expected to increase with ongoing climate change. The goal of this study was to determine how variation in the environmental conditions of water tracks influences the composition and diversity of microbial communities. We found significant differences in microbial community composition between on- and off-water track samples, and across two distinct locations. Of the tested environmental variables, soil salinity was the best predictor of community composition, with members of the Bacteroidetes phylum being relatively more abundant at higher salinities and the Actinobacteria phylum showing the opposite pattern. There was also a significant, inverse relationship between salinity and bacterial diversity. Our results suggest water track formation significantly alters dry soil microbial communities, likely influencing subsequent ecosystem functioning. We highlight how Dry Valley water tracks could be a useful model system for understanding the potential habitability of transiently wetted environments found on the surface of Mars.

4.
Sci Rep ; 3: 1166, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23378901

RESUMEN

The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from "warm/wet" to "cold/dry" climates.

5.
Sci Rep ; 3: 2269, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23881292

RESUMEN

Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA