Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mediators Inflamm ; 2019: 3451461, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148944

RESUMEN

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP. We now show that the cAMP pathway directly upregulates IL-10 transcription and plays an important permissive and synergistic role in early, but not late, LPS-stimulated IL-10 mRNA and protein expression in mouse macrophages and in a mouse septic shock model. Our results suggest that the loss of synergism is not due to desensitization of the cAMP inducing signal, and it is not mediated by a positive crosstalk between the cAMP and type I IFN pathways. First, cAMP elevation in LPS-treated cells decreased the secretion of type I IFN. Second, autocrine/paracrine type I IFNs induce IL-10 promoter reporter activity only additively, but not synergistically, with the cAMP pathway. IL-10 promoter reporter activity was synergistically induced by cAMP elevation in macrophages stimulated by an agonist of either TLR4, TLR2/6, or TLR7, receptors which signal via MyD88, but not by an agonist of TLR3 which signals independently of MyD88. Moreover, MyD88 knockout largely reduced the synergistic IL-10 expression, indicating that MyD88 is required for the synergism displayed by LPS with cAMP. This report delineates the temporal regulation of early cAMP-accelerated vs. late type I IFN-dependent IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.


Asunto(s)
Interferón Tipo I/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células RAW 264.7 , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos
2.
Immunology ; 127(1): 103-15, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18793216

RESUMEN

Tight regulation of the production of the key pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is essential for the prevention of chronic inflammatory diseases. In vivo administration of a synthetic phospholipid, named hereafter phospho-ceramide analogue-1 (PCERA-1), was previously found to suppress lipopolysaccharide (LPS)-induced TNF-alpha blood levels. We therefore investigated the in vitro anti-inflammatory effects of PCERA-1. Here, we show that extracellular PCERA-1 potently suppresses production of the pro-inflammatory cytokine TNF-alpha in RAW264.7 macrophages, and in addition, independently and reciprocally regulates the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Specificity is demonstrated by the inability of the phospholipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) to perform these activities. Similar TNF-alpha suppression and IL-10 induction by PCERA-1 were observed in macrophages when activated by Toll-like receptor 4 (TLR4), TLR2 and TLR7 agonists. Regulation of cytokine production is demonstrated at the mRNA and protein levels. Finally, we show that, while PCERA-1 does not block activation of nuclear factor (NF)-kappaB and mitogen-activated protein kinases by LPS, it elevates the intracellular cAMP level. In conclusion, the anti-inflammatory activity of PCERA-1 seems to be mediated by a cell membrane receptor, upstream of cAMP production, and eventually TNF-alpha suppression and IL-10 induction. Thus, identification of the PCERA-1 receptor may provide new pharmacological means to block inflammation.


Asunto(s)
Ceramidas/inmunología , Interleucina-10/biosíntesis , Macrófagos/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Antiinflamatorios/inmunología , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Mediadores de Inflamación/metabolismo , Interleucina-10/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/inmunología , Ratones , ARN Mensajero/genética , Transducción de Señal/inmunología , Receptores Toll-Like/agonistas , Receptores Toll-Like/inmunología , Factor de Necrosis Tumoral alfa/genética
3.
FEBS Lett ; 529(1): 1-5, 2002 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-12354603

RESUMEN

Type I chaperonins play an essential role in the folding of newly translated and stress-denatured proteins in eubacteria, mitochondria and chloroplasts. Since their discovery, the bacterial chaperonins have provided an excellent model system for investigating the mechanism by which chaperonins mediate protein folding. Due to the high conservation of the primary sequence among Type I chaperonins, it is generally accepted that organellar chaperonins function similar to the bacterial ones. However, recent studies indicate that the chloroplast and mitochondrial chaperonins possess unique structural and functional properties that distinguish them from their bacterial homologs. This review focuses on the unique properties of organellar chaperonins.


Asunto(s)
Bacterias/metabolismo , Chaperoninas/fisiología , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Chaperonina 10/química , Chaperonina 10/fisiología , Chaperonina 60/química , Chaperonina 60/fisiología , Chaperoninas/química
4.
PLoS One ; 7(12): e50318, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226518

RESUMEN

Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-chaperonin.


Asunto(s)
Chaperonina 60/metabolismo , Mitocondrias/metabolismo , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido
5.
Mol Immunol ; 46(10): 1979-87, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19362373

RESUMEN

Expression of the anti-inflammatory cytokine IL-10 can be induced either by TLR agonists such as lipopolysaccharide (LPS), or by various endogenous stimuli, in particular those acting via a cAMP-dependent signaling pathway. We have previously reported that the synthetic phospho-ceramide analogue-1 (PCERA-1) increases cAMP level and subsequently down-regulates production of TNFalpha and up-regulates production of IL-10 in LPS-stimulated macrophages. The objective of this study was to determine the mechanism of activity of PCERA-1 and the role of cAMP in LPS-induced IL-10 production. We show here that PCERA-1 induces IL-10 production in synergism with various TLR agonists in mouse RAW264.7 macrophages. Cooperativity is evident both at the mRNA and protein levels. IL-10 production by LPS and PCERA-1 is mediated by the cAMP pathway and by the p38 MAP kinase. Phosphorylation of p38 is cooperatively accomplished by LPS and PCERA-1 or other cAMP inducers. Furthermore, the activity of PCERA-1 can be partially mimicked by a cell-permeable analog of cAMP, and blocked by the protein kinase A (PKA) inhibitor H89. Finally, in the absence of PCERA-1, the residual IL-10 induction by LPS depends on the basal cAMP level as it can be largely elevated by the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results thus indicate that IL-10 induction by LPS critically depends on basal cAMP level, and that a co-stimulus by a TLR agonist and a cAMP-elevating agent results in synergistic PKA-dependent and p38-dependent IL-10 production.


Asunto(s)
Ceramidas/farmacología , AMP Cíclico/metabolismo , Interleucina-10/biosíntesis , Lipopolisacáridos/farmacología , Organofosfatos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Interleucina-10/genética , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA