Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2217687120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649430

RESUMEN

The heart develops in a synchronized sequence of proliferation and differentiation of cardiac progenitor cells (CPCs) from two anatomically distinct pools of cells, the first heart field (FHF) and second heart field (SHF). Congenital heart defects arise upon dysregulation of these processes, many of which are restricted to derivatives of the FHF or SHF. Of the conserved set of signaling pathways that regulate development, the Wnt signaling pathway has long been known for its importance in SHF development. The source of such Wnts has remained elusive, though it has been postulated that these Wnts are secreted from ectodermal or endodermal sources. The central question remains unanswered: Where do these Wnts come from? Here, we show that CPCs autoregulate SHF development via Wnt through genetic manipulation of a key Wnt export protein (Wls), scRNA-seq analysis of CPCs, and use of our precardiac organoid system. Through this, we identify dysregulated developmental trajectories of anterior SHF cell fate, leading to a striking single ventricle phenotype in knockout embryos. We then applied our findings to our precardiac organoid model and found that Wnt2 is sufficient to restore SHF cell fate in our model of disrupted endogenous Wnt signaling. In this study, we provide a basis for SHF cell fate decision-proliferation vs. differentiation-autoregulated by CPCs through Wnt.


Asunto(s)
Cardiopatías Congénitas , Corazón , Humanos , Corazón/fisiología , Diferenciación Celular , Vía de Señalización Wnt , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Differentiation ; 130: 7-15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36527791

RESUMEN

Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.


Asunto(s)
Riñón , Nefronas , Ratones , Animales , Femenino , Embarazo , Proteína X Asociada a bcl-2/metabolismo , Nefronas/metabolismo , Apoptosis , Diferenciación Celular , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo
3.
Differentiation ; 130: 28-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36543010

RESUMEN

The International Society of Differentiation was born from the First International Conference on Cell Differentiation conceived by D.V. and held in Nice, France in 1971. The conference also resulted in the creation of the journal of the Society named Differentiation. The Society advocates for the field of differentiation through the journal Differentiation, organizing and supporting international scientific conferences, honoring scientific achievements, and supporting trainees.


Asunto(s)
Diferenciación Celular , Sociedades Científicas , Sociedades Científicas/historia
4.
Development ; 147(21)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32907848

RESUMEN

The closure of the embryonic ventral body wall in amniotes is an important morphogenetic event and is essential for life. Defects in human ventral wall closure are a major class of birth defect and a significant health burden. Despite this, very little is understood about how the ventral body wall is formed. Here, we show that fibroblast growth factor (FGF) ligands FGF8, FGF17 and FGF18 are essential for this process. Conditional mouse mutants for these genes display subtle migratory defects in the abdominal muscles of the ventral body wall and an enlarged umbilical ring, through which the internal organs are extruded. By refining where and when these genes are required using different Cre lines, we show that Fgf8 and Fgf17 are required in the presomitic mesoderm, whereas Fgf18 is required in the somites. This study identifies complex and multifactorial origins of ventral wall defects and has important implications for understanding their origins during embryonic development.


Asunto(s)
Tipificación del Cuerpo , Embrión de Mamíferos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hernia Umbilical , Masculino , Ratones , Modelos Biológicos , Morfogénesis , Mutación/genética , Especificidad de Órganos , Dominios Proteicos , Somitos/metabolismo , Células Madre/metabolismo
5.
Dev Dyn ; 251(5): 877-884, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34719815

RESUMEN

BACKGROUND: Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS: Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS: These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.


Asunto(s)
Oído Interno , Factores de Crecimiento de Fibroblastos , Animales , Ectodermo/metabolismo , Femenino , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 4 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Familia de Multigenes , Proteínas del Tejido Nervioso/genética , Embarazo
6.
Development ; 145(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29615464

RESUMEN

Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.


Asunto(s)
Tipificación del Cuerpo/fisiología , Polaridad Celular/fisiología , Factor 4 de Crecimiento de Fibroblastos/fisiología , Factor 8 de Crecimiento de Fibroblastos/fisiología , Proteína Wnt-5a/fisiología , Animales , Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Extremidades/embriología , Factor 4 de Crecimiento de Fibroblastos/deficiencia , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/deficiencia , Factor 8 de Crecimiento de Fibroblastos/genética , Mesodermo/embriología , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal , Proteína Wnt-5a/deficiencia , Proteína Wnt-5a/genética
7.
Dev Dyn ; 248(9): 882-893, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31290205

RESUMEN

BACKGROUND: Fibroblast growth factor 18 (FGF18) functions in the development of several tissues, including the lung, limb bud, palate, skeleton, central nervous system, and hair follicle. Mice containing a germline knockout of Fgf18 (Fgf18 -/- ) die shortly after birth. Postnatally, FGF18 is being evaluated for pathogenic roles in fibrosis and several types of cancer. The specific cell types that express FGF18 have been difficult to identify, and the function of FGF18 in postnatal development and tissue homeostasis has been hampered by the perinatal lethality of Fgf18 null mice. RESULTS: We engineered a floxed allele of Fgf18 (Fgf18 flox ) that allows conditional gene inactivation and a CreERT2 knockin allele (Fgf18 CreERT2 ) that allows the precise identification of cells that express Fgf18 and their lineage. We validated the Fgf18 flox allele by targeting it in mesenchymal tissue and primary mesoderm during embryonic development, resulting in similar phenotypes to those observed in Fgf18 null mice. We also use the Fgf18 CreERT2 allele, in combination with a conditional fluorescent reporter to confirm known and identify new sites of Fgf18 expression. CONCLUSION: These alleles will be useful to investigate FGF18 function during organogenesis and tissue homeostasis, and to target specific cell lineages at embryonic and postnatal time points.


Asunto(s)
Alelos , Factores de Crecimiento de Fibroblastos/metabolismo , Integrasas/genética , Ingeniería de Proteínas/métodos , Animales , Linaje de la Célula , Desarrollo Embrionario , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/fisiología , Homeostasis , Mesodermo , Ratones , Organogénesis
8.
PLoS Genet ; 12(5): e1006018, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27144312

RESUMEN

During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease.


Asunto(s)
Proteína Morfogenética Ósea 4/genética , Proteínas Portadoras/genética , Factor 3 de Crecimiento de Fibroblastos/genética , Cresta Neural/metabolismo , Defectos del Tubo Neural/genética , Animales , Tipificación del Cuerpo/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/metabolismo , Muerte Celular/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Cresta Neural/crecimiento & desarrollo , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Transducción de Señal/genética , Somitos/crecimiento & desarrollo , Somitos/metabolismo
9.
Development ; 142(9): 1628-38, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25922526

RESUMEN

In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/ß-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/ß-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Mesodermo/embriología , Células-Madre Neurales/fisiología , Línea Primitiva/citología , Transducción de Señal/fisiología , Animales , Técnicas Histológicas , Inmunohistoquímica , Hibridación in Situ , Mesodermo/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Proteína Wnt3A/metabolismo
10.
Dev Biol ; 411(1): 72-84, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26794256

RESUMEN

Fibroblast growth factor (FGF) signaling is a critical regulator of skeletal development. Fgf9 and Fgf18 are the only FGF ligands with identified functions in embryonic bone growth. Mice lacking Fgf9 or Fgf18 have distinct skeletal phenotypes; however, the extent of overlapping or redundant functions for these ligands and the stage-specific contributions of FGF signaling to chondrogenesis and osteogenesis are not known. To identify separate versus shared roles for FGF9 and FGF18, we generated a combined series of Fgf9 and Fgf18 null alleles. Analysis of embryos lacking alleles of Fgf9 and Fgf18 shows that both encoded ligands function redundantly to control all stages of skeletogenesis; however, they have variable potencies along the proximodistal limb axis, suggesting gradients of activity during formation of the appendicular skeleton. Congenital absence of both Fgf9 and Fgf18 results in a striking osteochondrodysplasia and revealed functions for FGF signaling in early proximal limb chondrogenesis. Additional defects were also noted in craniofacial bones, vertebrae, and ribs. Loss of alleles of Fgf9 and Fgf18 also affect the expression of genes encoding other key intrinsic skeletal regulators, including IHH, PTHLH (PTHrP), and RUNX2, revealing potential direct, indirect, and compensatory mechanisms to coordinate chondrogenesis and osteogenesis.


Asunto(s)
Desarrollo Óseo/genética , Huesos/embriología , Condrogénesis/genética , Factor 9 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Osteocondrodisplasias/genética , Osteogénesis/genética , Animales , Huesos/anomalías , Diferenciación Celular , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Factor 9 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Placa de Crecimiento/embriología , Proteínas Hedgehog/biosíntesis , Ratones , Ratones Noqueados , Proteína Relacionada con la Hormona Paratiroidea/biosíntesis , Transducción de Señal/genética
11.
Dev Biol ; 411(2): 266-276, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26826495

RESUMEN

During vertebrate embryogenesis the interdigital mesenchyme is removed by programmed cell death (PCD), except in species with webbed limbs. Although bone morphogenetic proteins (BMPs) have long been known to be players in this process, it is unclear if they play a direct role in the interdigital mesenchyme or if they only act indirectly, by affecting fibroblast growth factor (FGF) signaling. A series of genetic studies have shown that BMPs act indirectly by regulating the withdrawal of FGF activity from the apical ectodermal ridge (AER); this FGF activity acts as a cell survival factor for the underlying mesenchyme. Other studies using exogenous factors to inhibit BMP activity in explanted mouse limbs suggest that BMPs do not act directly in the mesenchyme. To address the question of whether BMPs act directly, we used an interdigit-specific Cre line to inactivate several genes that encode components of the BMP signaling pathway, without perturbing the normal downregulation of AER-FGF activity. Of three Bmps expressed in the interdigital mesenchyme, Bmp7 is necessary for PCD, but Bmp2 and Bmp4 both have redundant roles, with Bmp2 being the more prominent player. Removing BMP signals to the interdigit by deleting the receptor gene, Bmpr1a, causes a loss of PCD and syndactyly, thereby unequivocally proving that BMPs are direct triggers of PCD in this tissue. We present a model in which two events must occur for normal interdigital PCD: the presence of a BMP death trigger and the absence of an FGF survival activity. We demonstrate that neither event is required for formation of the interdigital vasculature, which is necessary for PCD. However, both events converge on the production of reactive oxygen species that activate PCD.


Asunto(s)
Apoptosis , Proteína Morfogenética Ósea 2/fisiología , Proteína Morfogenética Ósea 4/fisiología , Proteína Morfogenética Ósea 7/fisiología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Cruzamientos Genéticos , Extremidades/embriología , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Miembro Anterior/patología , Integrasas/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sindactilia/genética , Factores de Tiempo , Dedos del Pie/patología , beta-Galactosidasa/metabolismo
12.
Genesis ; 54(2): 91-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26666435

RESUMEN

The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss-of-function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic cross-over between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele-specific single-nucleotide polymorphisms. We demonstrated the utility of the Fgf3(Δ)-Fgf4(flox)-cis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3(Δ)-Fgf4(flox)-cis line will be useful to study redundancy of these genes in a variety of tissues and stages in development.


Asunto(s)
Línea Celular , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Animales , Células Madre Embrionarias , Marcación de Gen , Ratones , Ratones Endogámicos C57BL
13.
Hum Mol Genet ; 23(25): 6807-14, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25082826

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) affect about 1 in 500 births and are a major cause of morbidity in infants. Duplex collecting systems rank among the most common abnormalities of CAKUT, but the molecular basis for this defect is poorly understood. In mice, conditional deletion of Wnt5a in mesoderm results in bilateral duplex kidney and ureter formation. The ureteric buds (UBs) in mutants emerge as doublets from the intermediate mesoderm (IM)-derived nephric duct (ND) without anterior expansion of the glial cell line-derived neurotrophic factor (Gdnf) expression domain in the surrounding mesenchyme. Wnt5a is normally expressed in a graded manner at the posterior end of the IM, but its expression is down-regulated prior to UB outgrowth at E10.5. Furthermore, ablation of Wnt5a in the mesoderm with an inducible Cre at E7.5 results in duplex UBs, whereas ablation at E8.5 yields normal UB outgrowth, demonstrating that Wnt5a functions in IM development well before the formation of the metanephros. In mutants, the posterior ND is duplicated and surrounding Pax2-positive mesenchymal cells persist in the nephric cord, suggesting that disruption of normal ND patterning prompts the formation of duplex ureters and kidneys. Ror2 homozygous mutants, which infrequently yield duplex collecting systems, show a dramatic increase in incidence with the additional deletion of one copy of Wnt5a, implicating this receptor in non-canonical Wnt5a signaling during IM development. This work provides the first evidence of a role of Wnt5a/Ror2 signaling in IM extension and offers new insights into the etiology of CAKUT and possible involvement of Wnt5a/Ror2 mutations.


Asunto(s)
Riñón/metabolismo , Mesodermo/metabolismo , Morfogénesis/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Transducción de Señal/genética , Proteínas Wnt/genética , Animales , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Homocigoto , Integrasas/genética , Integrasas/metabolismo , Riñón/crecimiento & desarrollo , Riñón/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Mesodermo/crecimiento & desarrollo , Mesodermo/patología , Ratones , Ratones Transgénicos , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Factores de Tiempo , Uréter/crecimiento & desarrollo , Uréter/metabolismo , Uréter/patología , Proteínas Wnt/deficiencia , Proteína Wnt-5a , Conductos Mesonéfricos/crecimiento & desarrollo , Conductos Mesonéfricos/metabolismo , Conductos Mesonéfricos/patología
14.
Development ; 138(24): 5369-78, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22110055

RESUMEN

During development of the urogenital tract, fibroblast growth factor 8 (Fgf8) is expressed in mesonephric tubules, but its role in this tissue remains undefined. An evaluation of previously generated T-Cre-mediated Fgf8-deficient mice (T-Cre; Fgf8(flox/Δ2,3) mice), which lack Fgf8 expression in the mesoderm, revealed that the cranial region of the Wolffian duct degenerated prematurely and the cranial mesonephric tubules were missing. As a result, the epididymis, vas deferens and efferent ductules were largely absent in mutant mice. Rarb2-Cre was used to eliminate FGF8 from the mesonephric tubules but to allow expression in the adjacent somites. These mutants retained the cranial end of the Wolffian duct and formed the epididymis and vas deferens, but failed to elaborate the efferent ductules, indicating that Fgf8 expression by the mesonephric tubules is required specifically for the formation of the ductules. Ret knockout mice do not form the ureteric bud, a caudal outgrowth of the Wolffian duct and progenitor for the collecting duct network in the kidney, but they do develop the cranial end normally. This indicates that Fgf8, but not Ret, expression is essential to the outgrowth of the cranial mesonephric tubules from the Wolffian duct and to the development of major portions of the sex accessory tissues in the male reproductive tract. Mechanistically, FGF8 functions upstream of Lhx1 expression in forming the nephron, and analysis of Fgf8 mutants similarly shows deficient Lhx1 expression in the mesonephric tubules. These results demonstrate a multifocal requirement for FGF8 in establishing the male reproductive tract ducts and implicate Lhx1 signaling in tubule elongation.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Genitales Masculinos/crecimiento & desarrollo , Conductos Mesonéfricos/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , Genitales Masculinos/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Masculino , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Nefronas/crecimiento & desarrollo , Nefronas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factores de Transcripción/metabolismo , Sistema Urogenital/crecimiento & desarrollo , Sistema Urogenital/metabolismo , Conductos Mesonéfricos/metabolismo
15.
Development ; 138(20): 4465-73, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21937598

RESUMEN

The transcriptional basis of vertebrate limb initiation, which is a well-studied system for the initiation of organogenesis, remains elusive. Specifically, involvement of the ß-catenin pathway in limb initiation, as well as its role in hindlimb-specific transcriptional regulation, are under debate. Here, we show that the ß-catenin pathway is active in the limb-forming area in mouse embryos. Furthermore, conditional inactivation of ß-catenin as well as Islet1, a hindlimb-specific factor, in the lateral plate mesoderm results in a failure to induce hindlimb outgrowth. We further show that Islet1 is required for the nuclear accumulation of ß-catenin and hence for activation of the ß-catenin pathway, and that the ß-catenin pathway maintains Islet1 expression. These two factors influence each other and function upstream of active proliferation of hindlimb progenitors in the lateral plate mesoderm and the expression of a common factor, Fgf10. Our data demonstrate that Islet1 and ß-catenin regulate outgrowth and Fgf10-Fgf8 feedback loop formation during vertebrate hindlimb initiation. Our study identifies Islet1 as a hindlimb-specific transcriptional regulator of initiation, and clarifies the controversy regarding the requirement of ß-catenin for limb initiation.


Asunto(s)
Miembro Posterior/embriología , Miembro Posterior/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Retroalimentación Fisiológica , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proteínas con Homeodominio LIM/genética , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Transducción de Señal , Factores de Transcripción/genética , beta Catenina/genética
16.
Chromosome Res ; 21(3): 311-28, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23681662

RESUMEN

Sister chromatids contain identical DNA sequence but are chiral with respect to both their helical handedness and their replication history. Emerging evidence from various model organisms suggests that certain stem cells segregate sister chromatids nonrandomly to either maintain genome integrity or to bias cellular differentiation in asymmetric cell divisions. Conventional methods for tracing of old vs. newly synthesized DNA strands generally lack resolution for individual chromosomes and employ halogenated thymidine analogs with profound cytotoxic effects on rapidly dividing cells. Here, we present a modified chromosome orientation fluorescence in situ hybridization (CO-FISH) assay, where identification of individual chromosomes and their replication history is achieved in subsequent hybridization steps with chromosome-specific DNA probes and PNA telomere probes. Importantly, we tackle the issue of BrdU cytotoxicity and show that our method is compatible with normal mouse ES cell biology, unlike a recently published related protocol. Results from our CO-FISH assay show that mitotic segregation of mouse chromosome 7 is random in ES cells, which contrasts previously published results from our laboratory and settles a controversy. Our straightforward protocol represents a useful resource for future studies on chromatid segregation patterns of in vitro-cultured cells from distinct model organisms.


Asunto(s)
Cromátides/metabolismo , Segregación Cromosómica , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Hibridación Fluorescente in Situ/métodos , Mitosis , Animales , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/toxicidad , Supervivencia Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Ratones , Mitosis/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 108(10): 4018-23, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368122

RESUMEN

Somites form along the embryonic axis by sequential segmentation from the presomitic mesoderm (PSM) and differentiate into the segmented vertebral column as well as other unsegmented tissues. Somites are thought to form via the intersection of two activities known as the clock and the wavefront. Previous work has suggested that fibroblast growth factor (FGF) activity may be the wavefront signal, which maintains the PSM in an undifferentiated state. However, it is unclear which (if any) of the FGFs expressed in the PSM comprise this activity, as removal of any one gene is insufficient to disrupt early somitogenesis. Here we show that when both Fgf4 and Fgf8 are deleted in the PSM, expression of most PSM genes is absent, including cycling genes, WNT pathway genes, and markers of undifferentiated PSM. Significantly, markers of nascent somite cell fate expand throughout the PSM, demonstrating the premature differentiation of this entire tissue, a highly unusual phenotype indicative of the loss of wavefront activity. When WNT signaling is restored in mutants, PSM progenitor markers are partially restored but premature differentiation of the PSM still occurs, demonstrating that FGF signaling operates independently of WNT signaling. This study provides genetic evidence that FGFs are the wavefront signal and identifies the specific FGF ligands that encode this activity. Furthermore, these data show that FGF action maintains WNT signaling, and that both signaling pathways are required in parallel to maintain PSM progenitor tissue.


Asunto(s)
Desarrollo Embrionario/fisiología , Factor 4 de Crecimiento de Fibroblastos/fisiología , Factor 8 de Crecimiento de Fibroblastos/fisiología , Somitos , Animales , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Ratones , Transducción de Señal
18.
Dev Dyn ; 241(2): 270-83, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22170865

RESUMEN

BACKGROUND: During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS: Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS: This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Línea Primitiva/citología , Línea Primitiva/fisiología , Animales , Movimiento Celular , Estratos Germinativos/citología , Estratos Germinativos/fisiología , Ratones , Ratones Endogámicos , Transducción de Señal
19.
Elife ; 122023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108810

RESUMEN

The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.


Asunto(s)
Sistema Nervioso Entérico , Factor Neurotrófico Derivado de la Línea Celular Glial , Adulto , Humanos , Motilidad Gastrointestinal , Perfilación de la Expresión Génica , Mesodermo
20.
Dev Biol ; 349(2): 395-405, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21035439

RESUMEN

The transcription factors required to initiate myogenesis in branchial arch- and somite-derived muscles are known, but the comparable upstream factors required during extraocular muscle development have not been identified. We show Pax7 is dispensable for extraocular muscle formation, whereas Pitx2 is cell-autonomously required to prevent apoptosis of the extraocular muscle primordia. The survival requirement for Pitx2 is stage-dependent and ends following stable activation of genes for the muscle regulatory factors (e.g. Myf5, MyoD), which is reduced in the absence of Pitx2. Further, PITX2 binds and activates transcription of the Myf5 and MyoD promoters, indicating these genes are direct targets. Collectively, these data demonstrate that PITX2 is required at several steps in the development of extraocular muscles, acting first as an anti-apoptotic factor in pre-myogenic mesoderm, and subsequently to activate the myogenic program in these cells. Thus, Pitx2 is the first demonstrated upstream activator of myogenesis in the extraocular muscles.


Asunto(s)
Apoptosis/fisiología , Proteínas de Homeodominio/metabolismo , Desarrollo de Músculos/fisiología , Factores Reguladores Miogénicos/metabolismo , Músculos Oculomotores/embriología , Factores de Transcripción/metabolismo , Animales , Apoptosis/genética , Supervivencia Celular , Inmunoprecipitación de Cromatina , Hibridación in Situ , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Factor de Transcripción PAX7/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína del Homeodomínio PITX2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA