RESUMEN
This perspective draws on the record of ancient pathogen genomes and microbiomes illuminating patterns of infectious disease over the course of the Holocene in order to address the following question. How did major changes in living circumstances involving the transition to and intensification of farming alter pathogens and their distributions? Answers to this question via ancient DNA research provide a rapidly expanding picture of pathogen evolution and in concert with archaeological and historical data, give a temporal and behavioral context for heath in the past that is relevant for challenges facing the world today, including the rise of novel pathogens.
Asunto(s)
Enfermedades Transmisibles , Humanos , Historia Antigua , Genoma , ADN AntiguoRESUMEN
The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
Asunto(s)
Evolución Biológica , Ecología/métodos , Hominidae/microbiología , Metagenoma/genética , Microbiota/genética , Boca/microbiología , África , Animales , Bacterias/clasificación , Bacterias/genética , Biopelículas , Placa Dental/microbiología , Geografía , Gorilla gorilla/microbiología , Hominidae/clasificación , Humanos , Pan troglodytes/microbiología , FilogeniaRESUMEN
The metabolome is a system of small biomolecules (metabolites) and a direct result of human bioculture. Consequently, metabolomics is well poised to impact anthropological and biomedical research for the foreseeable future. Overall, we provide a perspective on the ethical, legal, and social implications (ELSI) of metabolomics, which we argue are often more alarming than those of genomics. Given the current mechanisms to fund research, ELSI beyond human DNA is stifled and in need of considerable attention.
Asunto(s)
Genómica , Metaboloma , Genómica/ética , Genómica/legislación & jurisprudencia , Genómica/normas , HumanosRESUMEN
OBJECTIVES: Paleofeces are valuable to archeologists and evolutionary biologists for their potential to yield health, dietary, and host information. As a rich source of preserved biomolecules from host-associated microorganisms, they can also provide insights into the recent evolution and changing ecology of the gut microbiome. However, there is currently no standard method for DNA extraction from paleofeces, which combine the dual challenges of complex biological composition and degraded DNA. Due to the scarcity and relatively poor preservation of paleofeces when compared with other archeological remains, it is important to use efficient methods that maximize ancient DNA (aDNA) recovery while also minimizing downstream taxonomic biases. METHODS: In this study, we use shotgun metagenomics to systematically compare the performance of five DNA extraction methods on a set of well-preserved human and dog paleofeces from Mexico (~1,300 BP). RESULTS: Our results show that all tested DNA extraction methods yield a consistent microbial taxonomic profile, but that methods optimized for ancient samples recover significantly more DNA. CONCLUSIONS: These results show promise for future studies that seek to explore the evolution of the human gut microbiome by comparing aDNA data with those generated in modern studies.
Asunto(s)
Antropología Física/métodos , ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , Heces/química , Análisis de Secuencia de ADN/métodos , Animales , Arqueología/métodos , Perros , Microbioma Gastrointestinal , Metagenómica , Análisis de Secuencia de ADN/veterinariaRESUMEN
BACKGROUND: Termites are an important food resource for many human populations around the world, and are a good supply of nutrients. The fungus-farming 'higher' termite members of Macrotermitinae are also consumed by modern great apes and are implicated as critical dietary resources for early hominins. While the chemical nutritional composition of edible termites is well known, their microbiomes are unexplored in the context of human health. Here we sequenced the V4 region of the 16S rRNA gene of gut microbiota extracted from the whole intestinal tract of two Macrotermes sp. soldiers collected from the Limpopo region of South Africa. RESULTS: Major and minor soldier subcastes of M. falciger exhibit consistent differences in taxonomic representation, and are variable in microbial presence and abundance patterns when compared to another edible but less preferred species, M. natalensis. Subcaste differences include alternate patterns in sulfate-reducing bacteria and methanogenic Euryarchaeota abundance, and differences in abundance between Alistipes and Ruminococcaceae. M. falciger minor soldiers and M. natalensis soldiers have similar microbial profiles, likely from close proximity to the termite worker castes, particularly during foraging and fungus garden cultivation. Compared with previously published termite and cockroach gut microbiome data, the taxonomic representation was generally split between termites that directly digest lignocellulose and humic substrates and those that consume a more distilled form of nutrition as with the omnivorous cockroaches and fungus-farming termites. Lastly, to determine if edible termites may point to a shared reservoir for rare bacterial taxa found in the gut microbiome of humans, we focused on the genus Treponema. The majority of Treponema sequences from edible termite gut microbiota most closely relate to species recovered from other termites or from environmental samples, except for one novel OTU strain, which clustered separately with Treponema found in hunter-gatherer human groups. CONCLUSIONS: Macrotermes consumed by humans display special gut microbial arrangements that are atypical for a lignocellulose digesting invertebrate, but are instead suited to the simplified nutrition in the fungus-farmer diet. Our work brings to light the particular termite microbiome features that should be explored further as avenues in human health, agricultural sustainability, and evolutionary research.
Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Neoptera/microbiología , Animales , Evolución Biológica , Sudáfrica , SimbiosisRESUMEN
A novel Gram-stain-positive, non-motile, non-spore-forming coccus-shaped obligately anaerobic bacterium was recovered from a fecal sample obtained from an individual from a traditional community located on the southern coast of Peru. The results of analysis based on 16S rRNA gene sequencing indicated the novel bacterium to be phylogenetically distinct from other genera of members of the Peptoniphilaceae family, sharing a loose affinity with the genera Ezakiella, Finegoldia, Gallicola and Parvimonas. The major cellular fatty acids of the novel isolate were determined to be C16:0, C17:1ω8c, and C18:1ω9c. The DNA G+C content was 29.9âmol%. End products of metabolism from peptone yeast glucose broth (PYG) were determined to be acetate and methyl succinate. The diagnostic diamino acid present in the cell wall was lysine. On the basis of the phenotypic, chemotaxonomic and phylogenetic results the organism is a member of a novel genus belonging to the family Peptoniphilaceae for which the name Citroniella saccharovorans gen nov. sp. nov., is proposed. The type strain is M6.X9T (DSM 29873T=CCUG 66799T).
Asunto(s)
Clostridiales/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , Perú , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
OBJECTIVES: Dental calculus is among the richest known sources of ancient DNA in the archaeological record. Although most DNA within calculus is microbial, it has been shown to contain sufficient human DNA for the targeted retrieval of whole mitochondrial genomes. Here, we explore whether calculus is also a viable substrate for whole human genome recovery using targeted enrichment techniques. MATERIALS AND METHODS: Total DNA extracted from 24 paired archaeological human dentin and calculus samples was subjected to whole human genome enrichment using in-solution hybridization capture and high-throughput sequencing. RESULTS: Total DNA from calculus exceeded that of dentin in all cases, and although the proportion of human DNA was generally lower in calculus, the absolute human DNA content of calculus and dentin was not significantly different. Whole genome enrichment resulted in up to four-fold enrichment of the human endogenous DNA content for both dentin and dental calculus libraries, albeit with some loss in complexity. Recovering more on-target reads for the same sequencing effort generally improved the quality of downstream analyses, such as sex and ancestry estimation. For nonhuman DNA, comparison of phylum-level microbial community structure revealed few differences between precapture and postcapture libraries, indicating that off-target sequences in human genome-enriched calculus libraries may still be useful for oral microbiome reconstruction. DISCUSSION: While ancient human dental calculus does contain endogenous human DNA sequences, their relative proportion is low when compared with other skeletal tissues. Whole genome enrichment can help increase the proportion of recovered human reads, but in this instance enrichment efficiency was relatively low when compared with other forms of capture. We conclude that further optimization is necessary before the method can be routinely applied to archaeological samples.
Asunto(s)
ADN Antiguo , Cálculos Dentales/química , Dentina/química , Genoma Humano/genética , Genómica/métodos , Arqueología , ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , Cálculos Dentales/microbiología , Femenino , Humanos , Masculino , Análisis de Secuencia de ADNRESUMEN
The high-altitude transverse valleys [>3,000 m above sea level (masl)] of the Himalayan arc from Arunachal Pradesh to Ladahk were among the last habitable places permanently colonized by prehistoric humans due to the challenges of resource scarcity, cold stress, and hypoxia. The modern populations of these valleys, who share cultural and linguistic affinities with peoples found today on the Tibetan plateau, are commonly assumed to be the descendants of the earliest inhabitants of the Himalayan arc. However, this assumption has been challenged by archaeological and osteological evidence suggesting that these valleys may have been originally populated from areas other than the Tibetan plateau, including those at low elevation. To investigate the peopling and early population history of this dynamic high-altitude contact zone, we sequenced the genomes (0.04×-7.25×, mean 2.16×) and mitochondrial genomes (20.8×-1,311.0×, mean 482.1×) of eight individuals dating to three periods with distinct material culture in the Annapurna Conservation Area (ACA) of Nepal, spanning 3,150-1,250 y before present (yBP). We demonstrate that the region is characterized by long-term stability of the population genetic make-up despite marked changes in material culture. The ancient genomes, uniparental haplotypes, and high-altitude adaptive alleles suggest a high-altitude East Asian origin for prehistoric Himalayan populations.
Asunto(s)
Flujo Génico , Genoma Humano , Altitud , Humanos , Nepal , Paleodontología , Filogeografía , Análisis de Secuencia de ADN , TibetRESUMEN
A novel Gram-stain-positive, coccus-shaped, obligately anaerobic bacterium was isolated from a faecal sample obtained from an individual in a traditional community located off the southern coast of Peru. Comparative 16S rRNA gene sequence analysis showed the novel bacterium belonged to the genus Peptoniphilus but showed no particular relationship with any species, demonstrating less than 91 % 16S rRNA gene sequence similarity with all members of the genus. The major cellular fatty acids of the novel isolate were determined to be C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 2ω6,9c/anteiso-C18 : 0. The DNA G+C content was 34.4âmol%. End-products of metabolism from peptone-yeast-glucose broth (PYG) were determined to be acetate and butyrate. Based on the phenotypic, chemotaxonomic and phylogenetic results, the organism represents a novel species of the genus Peptoniphilus, for which the name Peptoniphilus catoniae sp. nov. is proposed. The type strain is M6.X2DT ( = DSM 29874T = CCUG 66798T).
Asunto(s)
Heces/microbiología , Firmicutes/clasificación , Cocos Grampositivos/clasificación , Filogenia , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Firmicutes/genética , Firmicutes/aislamiento & purificación , Cocos Grampositivos/genética , Cocos Grampositivos/aislamiento & purificación , Humanos , Perú , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
OBJECTIVES: Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. MATERIALS AND METHODS: Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. RESULTS: Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. DISCUSSION: Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Asunto(s)
ADN Mitocondrial/análisis , Cálculos Dentales/genética , Genoma Mitocondrial/genética , Análisis de Secuencia de ADN/métodos , Antropología Física , Arqueología , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Historia del Siglo XV , HumanosRESUMEN
OBJECTIVES: There is a major ascertainment bias in microbiome research, with individuals of predominately European ancestry living within metropolitan areas dominating most studies. Here we present a study of the salivary microbiome within a North American Indian community. This research is the culmination of four years of collaboration and community engagement with Cheyenne & Arapaho (C&A) tribal members from western Oklahoma. MATERIALS AND METHODS: Using 16S rRNA gene amplification and next-generation sequencing, we generated microbial taxonomic inventories for 37 individuals representing five towns within the C&A tribes. For comparison, we performed the same laboratory techniques on saliva samples from 20 non-native individuals (NNI) from Norman, Oklahoma. RESULTS: The C&A participants differ from the NNI in having reduced within-individual species richness and higher between-individual variation. Unsupervised clustering analyses reveal that three ecological groupings best fit the data, and while C&A individuals include assignments to all three groups, the NNI individuals are assigned to only one group. One of the ecological groups found exclusively among C&A participants was characterized by high abundance of the oral bacterial genus Prevotella. DISCUSSION: The C&A and NNI participants from Oklahoma have notable differences in their microbiome diversity, with a wider range of variation observed among the C&A individuals, including a higher frequency of bacteria implicated in systemic disorders. Overall, this study highlights the importance of engagement with indigenous communities, and the need for an improved understanding of human microbiome diversity among underrepresented groups and those individuals living outside of metropolitan areas.
Asunto(s)
Indígenas Norteamericanos/genética , Microbiota/genética , Saliva/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/genética , Humanos , Oklahoma , Prevotella/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.
Asunto(s)
Microbiota , Paleontología , Cálculos Dentales/microbiología , Dieta , Heces/microbiología , Salud/historia , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos , MetagenómicaRESUMEN
Determining the origins of those buried within undocumented cemeteries is of incredible importance to historical archaeologists and, in many cases, the nearby communities. In the case of Avondale Burial Place, a cemetery in Bibb County, Georgia, in use from 1820 to 1950, all written documentation of those interred within it has been lost. Osteological and archaeological evidence alone could not describe, with confidence, the ancestral origins of the 101 individuals buried there. In the present study, we used ancient DNA extraction methods in well-preserved skeletal fragments from 20 individuals buried in Avondale Burial Place to investigate the origins of the cemetery. Through examination of hypervariable region I (HVR1) in the mitochondrial genome (mtDNA), we determined haplotypes for all 20 of these individuals. Eighteen of these individuals belong to the L or U haplogroups, suggesting that Avondale Burial Place was most likely used primarily as a resting place for African Americans. After the surrounding Bibb County community expressed interest in investigating potential ancestral relationships to those within the cemetery, eight potential descendants provided saliva to obtain mtDNA HVR1 information. Three individuals from Avondale Burial Place matched three individuals with oral history ties to the cemetery. Using the online tool EMPOP, we calculated the likelihood of these exact matches occurring by chance alone (< 1%). The present findings exhibit the importance of genetic analysis of cemetery origins when archaeological and osteological data are inconclusive for estimating ancestry of anonymous historical individuals.
Asunto(s)
Arqueología/métodos , Cementerios , ADN Mitocondrial/genética , Genética de Población , Georgia , Haplotipos , HumanosRESUMEN
A strictly anaerobic Gram-stain positive, spore-forming, rod-shaped bacterium designated NE08V(T), was isolated from a fecal sample of an individual residing in a remote Amazonian community in Peru. Phylogenetic analysis based on the 16S rRNA gene sequence showed the organism belonged to the genus Clostridium and is most closely related to Clostridium vulturis (97.4% sequence similarity) and was further characterized using biochemical and chemotaxonomic methods. The major cellular fatty acids were anteiso C13:0 and C16:0 with a genomic DNA G + C content of 31.6 mol%. Fermentation products during growth with PYG were acetate and butyrate. Based on phylogenetic, phenotypic and chemotaxonomic information, strain NE08V was identified as representing a novel species of the genus Clostridium, for which the name Clostridium amazonense sp. nov. is proposed. The type strain is NE08V(T) (DSM 23598(T) = CCUG 59712(T)).
Asunto(s)
Clostridium/clasificación , Clostridium/aislamiento & purificación , Heces/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Humanos , Datos de Secuencia Molecular , Perú , Filogenia , Grupos de Población , ARN Ribosómico 16S/genética , Población Rural , Análisis de Secuencia de ADNRESUMEN
A novel Gram-stain positive, non-motile, non-sporeforming coccus-shaped, obligately anaerobic bacterium was isolated from a fecal sample of an individual residing in a traditional Peruvian community. The organism was characterized using biochemical, chemotaxonomic and phylogenetic methods. Comparative 16S rRNA gene sequence analyses and phenotypic characteristics demonstrated that the organism was biochemically and phenotypically related, but distinct, from a group of organisms referred to as the Gram-stain positive anaerobic cocci (GPAC). The major cellular fatty acids of the novel isolate were determined to be C16:0 (18.3%), C18:1ω9c (39.8%), C18:2ω6,9c/C18:0 ANTE (13.2%). Fermentation end products from PYG are acetate and formate. Cell-wall peptidoglycan was found to be A4α (L-Lys-L-Ala-L-Glu) and the G + C content was determined to be 38.4 mol%. Based on the phenotypic, chemotaxonomic, and phylogenetic results, Ezakiella peruensis gen. nov., sp. nov., is now proposed. The type strain is M6.X2(T) (DSM 27367(T) = NBRC 109957 (T) = CCUG 64571(T)).
Asunto(s)
Portador Sano , Heces/microbiología , Firmicutes/aislamiento & purificación , Vigilancia de la Población , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Firmicutes/química , Firmicutes/clasificación , Firmicutes/genética , Humanos , Datos de Secuencia Molecular , Perú , Fenotipo , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Genética de Población , Indígenas Sudamericanos/genética , Cromosomas Humanos Y , Femenino , Haplotipos , Humanos , Masculino , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Perú , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , América del SurRESUMEN
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Asunto(s)
Microbiota , Boca , Humanos , South Carolina , Boca/microbiología , Historia del Siglo XVIII , Filogenia , Población Negra , Dieta/historia , Masculino , Salud Bucal/historia , Femenino , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Adulto , Esclavización/historiaRESUMEN
Horizontal gene transfer (HGT) is a powerful evolutionary force facilitating bacterial adaptation and emergence of novel phenotypes. Several factors, including environmental ones, are predicted to restrict HGT, but we lack systematic and experimental data supporting these predictions. Here, we address this gap by measuring the relative fitness of 44 genes horizontally transferred from Escherichia coli to Salmonella enterica in infection-relevant environments. We estimated the distribution of fitness effects in each environment and identified that dosage-dependent effects across different environments are a significant barrier to HGT. The majority of genes were found to be deleterious. We also found longer genes had stronger negative fitness consequences than shorter ones, showing that gene length was negatively associated with HGT. Furthermore, fitness effects of transferred genes were found to be environmentally dependent. In summary, a substantial fraction of transferred genes had a significant fitness cost on the recipient, with both gene characteristics and the environment acting as evolutionary barriers to HGT.
RESUMEN
OBJECTIVES: Limited studies have focused on how European contact and colonialism impacted Native American oral microbiomes, specifically, the diversity of commensal or opportunistically pathogenic oral microbes, which may be associated with oral diseases. Here, we studied the oral microbiomes of pre-contact Wichita Ancestors, in partnership with the Descendant community, The Wichita and Affiliated Tribes, Oklahoma, USA. MATERIALS AND METHODS: Skeletal remains of 28 Wichita Ancestors from 20 archeological sites (dating approximately to 1250-1450 CE) were paleopathologically assessed for presence of dental calculus and oral disease. DNA was extracted from calculus, and partial uracil deglycosylase-treated double-stranded DNA libraries were shotgun-sequenced using Illumina technology. DNA preservation was assessed, the microbial community was taxonomically profiled, and phylogenomic analyzes were conducted. RESULTS: Paleopathological analysis revealed signs of oral diseases such as caries and periodontitis. Calculus samples from 26 Ancestors yielded oral microbiomes with minimal extraneous contamination. Anaerolineaceae bacterium oral taxon 439 was found to be the most abundant bacterial species. Several Ancestors showed high abundance of bacteria typically associated with periodontitis such as Tannerella forsythia and Treponema denticola. Phylogenomic analyzes of Anaerolineaceae bacterium oral taxon 439 and T. forsythia revealed biogeographic structuring; strains present in the Wichita Ancestors clustered with strains from other pre-contact Native Americans and were distinct from European and/or post-contact American strains. DISCUSSION: We present the largest oral metagenome dataset from a pre-contact Native American population and demonstrate the presence of distinct lineages of oral microbes specific to the pre-contact Americas.
Asunto(s)
Indio Americano o Nativo de Alaska , Metagenoma , Boca , Humanos , Cálculos/genética , Chloroflexi/genética , ADN Bacteriano/análisis , Metagenoma/genética , Periodontitis/microbiología , Treponema denticola/genética , Boca/microbiologíaRESUMEN
INTRODUCTION: Precision medicine research investigates the differences in individuals' genetics, environment, and lifestyle to tailor health prevention and treatment options as part of an emerging model of health care delivery. Advancing precision medicine research will require effective communication across a wide range of scientific and health care disciplines and with research participants who represent diverse segments of the population. METHODS: A multidisciplinary group convened over the course of a year and developed precision medicine research case examples to facilitate precision medicine research discussions with communities. RESULTS: A shared definition of precision medicine research as well as six case examples of precision medicine research involving genetic risk, pharmacogenetics, epigenetics, the microbiome, mobile health, and electronic health records were developed. DISCUSSION/CONCLUSION: The precision medicine research definition and case examples can be used as planning tools to establish a shared understanding of the scope of precision medicine research across multidisciplinary teams and with the diverse communities in which precision medicine research will take place. This shared understanding is vital for successful and equitable progress in precision medicine.