Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genesis ; 57(11-12): e23331, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31479176

RESUMEN

Members of the wnt gene family encode secreted glycoproteins that mediate critical intercellular communications in metazoans. Large-scale genome and transcriptome analyses have shown that this family is composed of 13 distinct subfamilies. These analyses have further established that the number of wnt genes per subfamily varies significantly between metazoan phyla, highlighting that gene duplication and gene loss events have shaped the complements of wnt genes during evolution. In sea urchins, for example, previous work reported the absence of representatives of both the WNT2 and WNT11 subfamilies in two different species, Paracentrotus lividus and Strongylocentrotus purpuratus. Recently, however, we identified a gene encoding a WNT2 ortholog in P. lividus and, based on that finding, we also reanalyzed the genome of S. purpuratus. Yet, we found no evidence of a bona fide wnt2 gene in S. purpuratus. Furthermore, we established that the P. lividus wnt2 gene is selectively expressed in vegetal tissues during embryogenesis, in a pattern that is similar, although not identical, to that of other P. lividus wnt genes. Taken together, this study amends previous work on the P. lividus wnt complement and reveals an unexpected variation in the number of wnt genes between closely related sea urchin species.


Asunto(s)
Paracentrotus/genética , Proteína wnt2/genética , Animales , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genoma , Paracentrotus/metabolismo , Erizos de Mar/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína wnt2/metabolismo
2.
Development ; 139(4): 816-25, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22274701

RESUMEN

In sea urchins, the nuclear accumulation of ß-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for ß-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of ß-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating ß-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that ß-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of ß-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.


Asunto(s)
Desarrollo Embrionario/fisiología , Endodermo/fisiología , Receptores Frizzled/metabolismo , Paracentrotus/citología , Paracentrotus/embriología , Transducción de Señal/fisiología , beta Catenina/metabolismo , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Endodermo/citología , Receptores Frizzled/genética , Regulación del Desarrollo de la Expresión Génica , Paracentrotus/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Madre/citología , Células Madre/fisiología , beta Catenina/genética
3.
Genesis ; 52(3): 235-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550167

RESUMEN

WNT signaling is, in all multicellular animals, an essential intercellular communication pathway that is critical for shaping the embryo. At the molecular level, WNT signals can be transmitted by several transduction cascades, all activated chiefly by the binding of WNT ligands to receptors of the FRIZZLED family. The first step in assessing the biological functions of WNT signaling during embryogenesis is thus the establishment of the spatiotemporal expression profiles of wnt and frizzled genes in the course of embryonic development. To this end, using quantitative polymerase chain reaction, Northern blot, and in situ hybridization assays, we report here the comprehensive expression patterns of all 11 wnt and 4 frizzled genes present in the genome of the sea urchin Paracentrotus lividus during its embryogenesis. Our findings indicate that the expression of these wnt ligands and frizzled receptors is highly dynamic in both time and space. We further establish that all wnt genes are chiefly transcribed in the vegetal hemisphere of the embryo, whereas expression of the frizzled genes is distributed more widely across the embryonic territories. Thus, in P. lividus, WNT ligands might act both as short- and long-range signaling molecules that may operate in all cell lineages and tissues to control various developmental processes during embryogenesis.


Asunto(s)
Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Paracentrotus/embriología , Paracentrotus/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Northern Blotting , Receptores Frizzled/genética , Perfilación de la Expresión Génica , Hibridación in Situ , Paracentrotus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Wnt/genética
4.
Development ; 138(15): 3297-306, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21750039

RESUMEN

In the sea urchin, entry of ß-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of ß-catenin, of a dominant-negative variant of GSK-3ß or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.


Asunto(s)
Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Erizos de Mar/anatomía & histología , Erizos de Mar/embriología , Erizos de Mar/genética , Proteínas Wnt/metabolismo , Animales , Embrión no Mamífero/fisiología , Inducción Embrionaria , Técnicas de Silenciamiento del Gen , Oocitos/citología , Oocitos/fisiología , Erizos de Mar/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/genética
5.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082140

RESUMEN

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

6.
Front Cell Dev Biol ; 10: 966408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393864

RESUMEN

The sea urchin Paracentrotus lividus has been used as a model system in biology for more than a century. Over the past decades, it has been at the center of a number of studies in cell, developmental, ecological, toxicological, evolutionary, and aquaculture research. Due to this previous work, a significant amount of information is already available on the development of this species. However, this information is fragmented and rather incomplete. Here, we propose a comprehensive developmental atlas for this sea urchin species, describing its ontogeny from fertilization to juvenile stages. Our staging scheme includes three periods divided into 33 stages, plus 15 independent stages focused on the development of the coeloms and the adult rudiment. For each stage, we provide a thorough description based on observations made on live specimens using light microscopy, and when needed on fixed specimens using confocal microscopy. Our descriptions include, for each stage, the main anatomical characteristics related, for instance, to cell division, tissue morphogenesis, and/or organogenesis. Altogether, this work is the first of its kind providing, in a single study, a comprehensive description of the development of P. lividus embryos, larvae, and juveniles, including details on skeletogenesis, ciliogenesis, myogenesis, coelomogenesis, and formation of the adult rudiment as well as on the process of metamorphosis in live specimens. Given the renewed interest for the use of sea urchins in ecotoxicological, developmental, and evolutionary studies as well as in using marine invertebrates as alternative model systems for biomedical investigations, this study will greatly benefit the scientific community and will serve as a reference for specialists and non-specialists interested in studying sea urchins.

7.
Mech Dev ; 120(5): 561-72, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12782273

RESUMEN

Transcription factors of the T-domain family regulate many developmental processes. We have isolated from the sea urchin a new member of the Tbx2 subfamily: coquillette. Coquillette has a late zygotic expression whose localization is dynamic: at the blastula stage it is restricted to the aboral side of most of the presumptive ectoderm and endoderm territories and from gastrulation on, to the aboral-most primary mesenchyme cells. Perturbation of coquillette function delays gastrulation and strongly disorganizes the skeleton of the larva. Coquillette is sensitive to alteration of the oral-aboral (OA) axis and we identify goosecoid, which controls oral and aboral fates in the ectoderm, as a probable upstream regulator. Coquillette appears to be an integral part of the patterning system along the OA axis.


Asunto(s)
Desarrollo Óseo , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras , Erizos de Mar/embriología , Proteínas de Dominio T Box/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Tipificación del Cuerpo , Clonación Molecular , ADN Complementario/metabolismo , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Proteína Goosecoide , Proteínas de Homeodominio/biosíntesis , Litio/farmacología , Cloruro de Litio/farmacología , Datos de Secuencia Molecular , Níquel/farmacología , Oligonucleótidos Antisentido/farmacología , Fenotipo , Filogenia , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Factores de Transcripción/fisiología , Transcripción Genética
8.
Development ; 134(12): 2293-302, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17507391

RESUMEN

During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.


Asunto(s)
Ectodermo/fisiología , Mesodermo/fisiología , Erizos de Mar/embriología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Linaje de la Célula , Ectodermo/citología , Ectodermo/metabolismo , Embrión no Mamífero , Gástrula , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Microinyecciones , Modelos Biológicos , Morfogénesis , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Erizos de Mar/citología
9.
Development ; 133(3): 547-57, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16396908

RESUMEN

Wnt signaling pathways play key roles in numerous developmental processes both in vertebrates and invertebrates. Their signals are transduced by Frizzled proteins, the cognate receptors of the Wnt ligands. This study focuses on the role of a member of the Frizzled family, Fz5/8, during sea urchin embryogenesis. During development, Fz5/8 displays restricted expression, beginning at the 60-cell stage in the animal domain and then from mesenchyme blastula stage, in both the animal domain and a subset of secondary mesenchyme cells (SMCs). Loss-of-function analyses in whole embryos and chimeras reveal that Fz5/8 is not involved in the specification of the main embryonic territories. Rather, it appears to be required in SMCs for primary invagination of the archenteron, maintenance of endodermal marker expression and apical localization of Notch receptors in endodermal cells. Furthermore, among the three known Wnt pathways, Fz5/8 appears to signal via the planar cell polarity pathway. Taken together, the results suggest that Fz5/8 plays a crucial role specifically in SMCs to control primary invagination during sea urchin gastrulation.


Asunto(s)
Tipificación del Cuerpo , Desarrollo Embrionario/fisiología , Receptores Frizzled/metabolismo , Gástrula/fisiología , Erizos de Mar , Animales , Polaridad Celular , Receptores Frizzled/clasificación , Receptores Frizzled/genética , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Filogenia , Receptores Notch/metabolismo , Erizos de Mar/anatomía & histología , Erizos de Mar/embriología , Erizos de Mar/crecimiento & desarrollo , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
10.
Development ; 133(21): 4341-53, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17038519

RESUMEN

Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expression pattern of nlk is strikingly similar to that of Delta and the two genes regulate the expression of each other. nlk overexpression, like ectopic activation of Notch signalling, provoked massive formation of mesoderm and associated epithelial mesenchymal transition. NLK function was found to be redundant with that of the MAP kinase ERK during mesoderm formation and to require the activity of the activating kinase TAK1. In addition, the sea urchin NLK, like its vertebrate counterpart, antagonizes the activity of the transcription factor TCF. Finally, activating the expression of a TCF-VP16 construct at blastula stages strongly inhibits endoderm and mesoderm formation, indicating that while TCF activity is required early for launching the endomesoderm gene regulatory network, it has to be downregulated at blastula stage in the mesodermal lineage. Taken together, our results indicate that the evolutionarily conserved TAK/NLK regulatory pathway has been recruited downstream of the Notch/Delta pathway in the sea urchin to switch off TCF-beta-catenin signalling in the mesodermal territory, allowing precursors of this germ layer to segregate from the endomesoderm.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mesodermo/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Paracentrotus , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción TCF/metabolismo , Secuencia de Aminoácidos , Animales , Inducción Embrionaria , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Litio/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de la Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Paracentrotus/citología , Paracentrotus/embriología , Paracentrotus/enzimología , Fenotipo , Receptores Notch/genética , Alineación de Secuencia , Factores de Transcripción TCF/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA