Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Physiol Plant ; 167(3): 365-377, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30536419

RESUMEN

Rate of photosynthesis and related plant carbohydrate status are crucial factors affecting plant vigor. Sugars providing carbon and energy sources serve also as important signaling molecules governing plant growth and development through a complex regulatory network. These facts are often neglected when mixotrophic cultivation of plants in vitro is used, where artificial exogenous sugar supply hinders studies of metabolism as well as sugar-driven developmental processes. We compared the growth, selected gas-exchange parameters and sugar metabolism characteristics in four model plants, potato (Solanum tuberosum 'Lada'), tobacco (Nicotiana tabacum 'Samsun'), rapeseed (Brassica napus 'Asgard') and strawberry (Fragaria vesca), under both photomixotrophic (PM) and photoautotrophic (PA) conditions. To ensure PA conditions, we used our improved sun caps that serve as gas and light permeable covers for cultivation vessels. We found bigger biomass accumulation, larger leaf areas, higher stomatal conductance and higher instantaneous water use efficiency and lower root sugar contents in PA plants compared to PM ones. However, for other characteristics (root biomass, root/shoot ratio, pigment contents, leaf sugar and starch levels and transpiration rates), a strong species-dependent reactions to the exogenous sugar supply was noted, which does not allow to create a general view on the overall impact of PM nutrition under in vitro conditions.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiología , Fragaria/genética , Fragaria/metabolismo , Fragaria/fisiología , Fotosíntesis/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiología
2.
Sensors (Basel) ; 17(6)2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28538685

RESUMEN

The aims of the study were: (i) to compare leaf reflectance in visible (VIS) (400-700 nm), near-infrared (NIR) (740-1140 nm) and short-wave infrared (SWIR) (2000-2400 nm) spectral ranges measured monthly by a contact probe on a single leaf and a stack of five leaves (measurement setup (MS)) of two broadleaved tree species during the vegetative season; and (ii) to test if and how selected vegetation indices differ under these two MS. In VIS, the pigment-related spectral region, the effect of MS on reflectance was negligible. The major influence of MS on reflectance was detected in NIR (up to 25%), the structure-related spectral range; and weaker effect in SWIR, the water-related spectral range. Vegetation indices involving VIS wavelengths were independent of MS while indices combining wavelengths from both VIS and NIR were MS-affected throughout the season. The effect of leaf stacking contributed to weakening the correlation between the leaf chlorophyll content and selected vegetation indices due to a higher leaf mass per area of the leaf sample. The majority of MS-affected indices were better correlated with chlorophyll content in both species in comparison with MS-unaffected indices. Therefore, in terms of monitoring leaf chlorophyll content using the contact probe reflectance measurement, these MS-affected indices should be used with caution, as discussed in the paper. If the vegetation indices are used for assessment of plant physiological status in various times of the vegetative season, then it is essential to take into consideration their possible changes induced by the particular contact probe measurement setup regarding the leaf stacking.


Asunto(s)
Hojas de la Planta , Clorofila , Estaciones del Año , Árboles , Agua
3.
Sensors (Basel) ; 16(11)2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801818

RESUMEN

Laboratory spectroscopy in visible and infrared regions is an important tool for studies dealing with plant ecophysiology and early recognition of plant stress due to changing environmental conditions. Leaf optical properties are typically acquired with a spectroradiometer coupled with an integration sphere (IS) in a laboratory or with a contact probe (CP), which has the advantage of operating flexibility and the provision of repetitive in-situ reflectance measurements. Experiments comparing reflectance spectra measured with different devices and device settings are rarely reported in literature. Thus, in our study we focused on a comparison of spectra collected with two ISs on identical samples ranging from a Spectralon and coloured papers as reference standards to vegetation samples with broadleaved (Nicotiana Rustica L.) and coniferous (Picea abies L. Karst.) leaf types. First, statistical measures such as mean absolute difference, median of differences, standard deviation and paired-sample t-test were applied in order to evaluate differences between collected reflectance values. The possibility of linear transformation between spectra was also tested. Moreover, correlation between normalised differential indexes (NDI) derived for each device and all combinations of wavelengths between 450 nm and 1800 nm were assessed. Finally, relationships between laboratory measured leaf compounds (total chlorophyll, carotenoids and water content), NDI and selected spectral indices often used in remote sensing were studied. The results showed differences between spectra acquired with different devices. While differences were negligible in the case of the Spectralon and they were possible to be modelled with a linear transformation in the case of coloured papers, the spectra collected with the CP and the ISs differed significantly in the case of vegetation samples. Regarding the spectral indices calculated from the reflectance data collected with the three devices, their mean values were in the range of the corresponding standard deviations in the case of broadleaved leaf type. Larger differences in optical leaf properties of spruce needles collected with the CP and ISs are implicated from the different measurement procedure due to needle-like leaf where shoots with spatially oriented needles were measured with the CP and individual needles with the IS. The study shows that a direct comparison between the spectra collected with two devices is not advisable as spectrally dependent offsets may likely exist. We propose that the future studies shall focus on standardisation of measurement procedures so that open access spectral libraries could serve as a reliable input for modelling of optical properties on a leaf level.


Asunto(s)
Nicotiana/química , Picea/química , Espectrofotometría/métodos , Carotenoides/química , Clorofila/química , Picea/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrofotometría Infrarroja , Nicotiana/metabolismo , Agua/química
4.
J Exp Bot ; 65(2): 609-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336344

RESUMEN

Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use.


Asunto(s)
Cloroplastos/metabolismo , Imagenología Tridimensional/métodos , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Modelos Biológicos , Picea
5.
Plants (Basel) ; 12(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903862

RESUMEN

The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonose Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.

6.
Plant Phenomics ; 5: 0111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026471

RESUMEN

Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.

7.
Front Plant Sci ; 13: 721064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712586

RESUMEN

Norway spruce has a wide natural distribution range, harboring substantial physiological and genetic variation. There are three altitudinal ecotypes described in this species. Each ecotype has been shaped by natural selection and retains morphological and physiological characteristics. Foliar spectral reflectance is readily used in evaluating the physiological status of crops and forest ecosystems. However, underlying genetics of foliar spectral reflectance and pigment content in forest trees has rarely been investigated. We assessed the reflectance in a clonal bank comprising three ecotypes in two dates covering different vegetation season conditions. Significant seasonal differences in spectral reflectance among Norway spruce ecotypes were manifested in a wide-ranging reflectance spectrum. We estimated significant heritable variation and uncovered phenotypic and genetic correlations among growth and physiological traits through bivariate linear models utilizing spatial corrections. We confirmed the relative importance of the red edge within the context of the study site's ecotypic variation. When interpreting these findings, growth traits such as height, diameter, crown length, and crown height allowed us to estimate variable correlations across the reflectance spectrum, peaking in most cases in wavelengths connected to water content in plant tissues. Finally, significant differences among ecotypes in reflectance and other correlated traits were detected.

8.
Sci Total Environ ; 838(Pt 3): 156483, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675888

RESUMEN

Climate controls forest biomass production through direct effects on cambial activity and indirectly through interactions with CO2, air pollution, and nutrient availability. The atmospheric concentration of CO2, sulfur and nitrogen deposition can also exert a significant indirect control on wood formation since these factors influence the stomatal regulation of transpiration and carbon uptake, that is, intrinsic water use efficiency (iWUE). Here we provide 120-year long tree-ring time series of iWUE, stem growth, climatic and combined sulfur and nitrogen (SN) deposition trends for two common tree species, Pinus sylvestris (PISY) and Picea abies (PCAB), at their lower and upper distribution margins in Central Europe. The main goals were to explain iWUE trends using theoretical scenarios including climatic and SN deposition data, and to assess the contribution of climate and iWUE to the observed growth trends. Our results showed that after a notable increase in iWUE between the 1950s and 1980s, this positive trend subsequently slowed down. The substantial rise of iWUE since the 1950s resulted from a combination of an accelerated increase in atmospheric CO2 concentrations (Ca) and a stable level of leaf intercellular CO2 (Ci). The offset of observed iWUE values above the trajectory of a constant Ci/Ca scenario was explained by trends in SN deposition (all sites) together with the variation of drought conditions (low-elevation sites only). Increasing iWUE over the 20th and 21st centuries improved tree growth at low-elevation drought-sensitive sites. In contrast, at high-elevation PCAB sites, growth was mainly stimulated by recent warming. We propose that SN pollution should be considered in order to explain the steep increase in iWUE of conifers in the 20th century throughout Central Europe and other regions with a significant SN deposition history.


Asunto(s)
Pinus , Tracheophyta , Carbono , Dióxido de Carbono/farmacología , Nitrógeno/farmacología , Pinus/fisiología , Azufre , Árboles , Agua
9.
Plants (Basel) ; 10(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834896

RESUMEN

Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.

10.
Antioxidants (Basel) ; 10(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807526

RESUMEN

Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.

11.
Sci Total Environ ; 404(2-3): 424-32, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18191443

RESUMEN

Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient availability is hypothesized based on negative correlations found between foliar N and forest floor dissolved organic carbon.


Asunto(s)
Carbono/análisis , Clorofila/análisis , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Hojas de la Planta/química , Suelo/análisis , Árboles/química , Carbono/química , Carbono/metabolismo , Celulosa/análisis , Celulosa/química , Celulosa/metabolismo , Clorofila/química , Clorofila/metabolismo , Ecosistema , Lignina/análisis , Lignina/química , Lignina/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Hojas de la Planta/metabolismo , Microbiología del Suelo , Solubilidad , Análisis Espectral , Árboles/metabolismo
12.
Tree Physiol ; 36(7): 883-95, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27126227

RESUMEN

Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.


Asunto(s)
Clorofila/fisiología , Variación Genética , Genotipo , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Pinus sylvestris/genética , Carácter Cuantitativo Heredable , Animales , Clorofila A , Transporte de Electrón , Fluorescencia , Bosques , Genes de Plantas , Luz , Complejo de Proteína del Fotosistema II/fisiología , Pinus sylvestris/fisiología , Árboles/genética , Árboles/fisiología
13.
PLoS One ; 7(6): e39524, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761814

RESUMEN

Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain undetected when subject to amplification by 'universal' primers. The lignocellulolytic assay suggests the basidiomycete may confer host adaptations distinct from those provisioned by the so far investigated ascomycetous ErM fungi.


Asunto(s)
Basidiomycota/genética , Ericaceae/microbiología , Micorrizas/genética , Raíces de Plantas/microbiología , Simbiosis/genética , Micorrizas/clasificación , Noruega , Filogenia
14.
Plant Sci ; 188-189: 60-70, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22525245

RESUMEN

Norway spruce (Picea abies L. Karst) grown under ambient (365-377 µmol(CO(2)) mol(-1); AC) and elevated (700 µmol(CO(2)) mol(-1); EC) CO(2) concentrations within glass domes with automatically adjustable windows and on an open-air control site were studied after 8 years of treatment. The effect of EC on photosynthesis, mesophyll structure and phenolics accumulation in sun and shade needles was examined. Photosynthetic assimilation and dark respiration rates were measured gasometrically; the structural parameters of mesophyll were determined using confocal microscopy and stereological methods. The contents of total soluble phenolics and lignin were assessed spectrophotometrically, and localizations of different phenolic groups were detected histochemically on needle cross-sections. EC enhanced the light-saturated CO(2) assimilation rate and reduced dark respiration in the current-year needles. No effects of CO(2) enrichment on mesophyll structural parameters were observed. Similarly, the accumulation and localization of phenolics and lignin remained unaffected by EC treatment. Needles differentiated into sun and shade ecotypes in the same manner and to the same extent irrespective of CO(2) treatment. Based on these results, it is apparent that the EC-induced enhancement of photosynthesis is not related to changes in the examined structural parameters of mesophyll and accumulation of phenolic compounds.


Asunto(s)
Dióxido de Carbono/farmacología , Lignina/metabolismo , Fenoles/metabolismo , Fotosíntesis/fisiología , Picea/efectos de los fármacos , Ecotipo , Lignina/análisis , Células del Mesófilo/ultraestructura , Fenoles/análisis , Picea/anatomía & histología , Picea/fisiología , Picea/efectos de la radiación , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Luz Solar , Factores de Tiempo , Árboles
15.
J Exp Bot ; 58(6): 1451-61, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17322549

RESUMEN

Recent design-based stereological methods that can be applied to thick sections cut in an arbitrary direction are presented and their implementation for measuring mesophyll anatomical characteristics is introduced. These methods use software-randomized virtual 3D probes, such as disector and fakir test probes, in stacks of optical sections acquired using confocal microscopy. They enable unbiased estimations of the mean mesophyll cell volume, mesophyll cell number in a needle, and for the first time an internal surface area of needles or other narrow leaves directly from the fresh tissue cross-sections cut using a hand microtome. Therefore, reliable results can be obtained much faster than when using a standard microtechnical preparation. The proposed methods were tested on Norway spruce needles affected for 1 year by acid rain treatment. The effect of acid rain resulted in changes of mesophyll parameters: the ratio of intercellular spaces per mesophyll cell volume increased, while needle internal surface area, total number of mesophyll cells, and number of mesophyll cells per unit volume of a needle decreased in the treated needles.


Asunto(s)
Picea/citología , Hojas de la Planta/citología , Lluvia , Dióxido de Carbono/metabolismo , Luz , Microscopía Confocal , Fotosíntesis , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA