Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nutr Cancer ; : 1-17, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066475

RESUMEN

Epimedium is a Chinese herb known as "yin and yang fire," first mentioned in the Compendium of Materia Medica. Many of the proprietary Chinese medicines used in clinical practice contain Epimedium as an ingredient, and its main active constituents include icariin, icaritin, and icariside II, among others. In addition to its traditional use in treating fatigue and sexual problems, modern research has confirmed that the main bioactive compounds in Epimedium have pharmacological effects such as antidepressant, antibacterial, antiviral, antioxidant, and anti-inflammatory properties, as well as inhibiting bone destruction, promoting bone growth, improving immune regulation and protecting the cardio-cerebral vascular system. With the continuous development of extraction and purification techniques, the development and use of bioactive compounds in Epimedium have significantly progressed, and the anticancer effect has received widespread attention. Since natural herbs have few side effects on the human body and do not easily develop drug resistance, they have long been the direction of research in cancer treatment. This review summarizes the latest research on the anticancer effects of Epimedium and its extracts, describes the bioactive compounds, pharmacological efficacy, and antitumor mechanism of Epimedium, and gives a new view on the administration and development of Epimedium.

2.
Opt Express ; 31(19): 31654-31660, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710679

RESUMEN

We demonstrate a robust single-photon Ramsey interferometer based on a single Rydberg excitation, where the photon is stored as a Rydberg polariton in an ensemble of atoms. This coherent conversion of the photon to Rydberg polariton enables to split an incoming photon into a superposition state of two Rydberg states by applying microwave fields, which constructs two paths of interferometer. Ramsey interference fringes are demonstrated when we scan either the detuning of the microwave or the free evolution time, from which we can obtain the resonant transition frequency of two Rydberg states. We use the Ramsey-like sequence to demonstrate coherent manipulation of the stored single-photon to construct different interference patterns. In addition, the robustness of the Ramsey interferometer to the fluctuation of incoming photon numbers and optical depth (OD) of the atomic ensemble is tested, showing that the coherent of Ramsey interferometer is preserved for input photon number in a range of Rin < 15 and for OD varying from 1.0 to 4.0. The robust interferometer will find its applications in quantum precision measurement.

3.
Opt Express ; 31(13): 20641-20650, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381183

RESUMEN

We demonstrate a coherent microwave manipulation of a single optical photon based on a single Rydberg excitation in an atomic ensemble. Due to the strong nonlinearities in a Rydberg blockade region, a single photon can be stored in the formation of Rydberg polariton using electromagnetically induced transparency (EIT). The manipulation of the stored single photon is performed by applying a microwave field that resonantly couples the nS1/2 and nP3/2, while the coherent readout is performed by mapping the excitation into a single photon. We achieve a single photon source with g(2)(0) = 0.29 ± 0.08 at 80S1/2 without applying microwave fields. By implementing the microwave field during the storage time and retrieval process, we show the Rabi oscillation and modulation of stored photons that can be controlled to retrieve early or late. Rapid modulation frequencies up to 50 MHz can be obtained. Our experimental observations can be well explained via numerical simulations based on an improved superatom model accounting for the dipole-dipole interactions in a Rydberg EIT medium. Our work provides a way to manipulate the stored photons by employing the microwave field, which is significant for developing quantum technologies.

4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901944

RESUMEN

Aldo-keto reductase family 1 member C3 (AKR1C3) plays an important role in prostate cancer (PCa) progression, particularly in castration-resistant prostate cancer (CRPC). It is necessary to establish a genetic signature associated with AKR1C3 that can be used to predict the prognosis of PCa patients and provide important information for clinical treatment decisions. AKR1C3-related genes were identified via label-free quantitative proteomics of the AKR1C3-overexpressing LNCaP cell line. A risk model was constructed through the analysis of clinical data, PPI, and Cox-selected risk genes. Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) curves were used to verify the accuracy of the model, and two external datasets were used to verify the reliability of the results. Subsequently, the tumor microenvironment and drug sensitivity were explored. Moreover, the roles of AKR1C3 in the progression of PCa were verified in LNCaP cells. MTT, colony formation, and EdU assays were conducted to explore cell proliferation and drug sensitivity to enzalutamide. Migration and invasion abilities were measured using wound-healing and transwell assays, and qPCR was used to assess the expression levels of AR target genes and EMT genes. CDC20, SRSF3, UQCRH, INCENP, TIMM10, TIMM13, POLR2L, and NDUFAB1 were identified as AKR1C3-associated risk genes. These risk genes, established using the prognostic model, can effectively predict the recurrence status, immune microenvironment, and drug sensitivity of PCa. Tumor-infiltrating lymphocytes and several immune checkpoints that promote cancer progression were higher in high-risk groups. Furthermore, there was a close correlation between the sensitivity of PCa patients to bicalutamide and docetaxel and the expression levels of the eight risk genes. Moreover, through in vitro experiments, Western blotting confirmed that AKR1C3 enhanced SRSF3, CDC20, and INCENP expression. We found that PCa cells with a high expression of AKR1C3 have high proliferation ability and high migration ability and were insensitive to enzalutamide. AKR1C3-associated genes had a significant role in the process of PCa, immune responses, and drug sensitivity and offer the potential for a novel model for prognostic prediction in PCa.


Asunto(s)
Neoplasias de la Próstata , Proteómica , Masculino , Humanos , Reproducibilidad de los Resultados , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Factores de Empalme Serina-Arginina
5.
PLoS Pathog ; 16(10): e1008848, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007034

RESUMEN

Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Citoplasma , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Chaperonas Moleculares/genética , Conformación Proteica , Homología de Secuencia de Aminoácido
6.
Environ Microbiol ; 23(3): 1541-1558, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33346387

RESUMEN

Type II toxin-antitoxin (TA) systems modulate many essential cellular processes in prokaryotic organisms. Recent studies indicate certain type II antitoxins also transcriptionally regulate other genes, besides neutralizing toxin activity. Herein, we investigated the diverse transcriptional repression properties of type II TA antitoxin PaHigA from Pseudomonas aeruginosa. Biochemical and functional analyses showed that PaHigA recognized variable pseudopalindromic DNA sequences and repressed expression of multiple genes. Furthermore, we presented high resolution structures of apo-PaHigA, PaHigA-PhigBA and PaHigA-Ppa2440 complex, describing how the rearrangements of the HTH domain accounted for the different DNA-binding patterns among HigA homologues. Moreover, we demonstrated that the N-terminal loop motion of PaHigA was associated with its apo and DNA-bound states, reflecting a switch mechanism regulating HigA antitoxin function. Collectively, this work extends our understanding of how the PaHigB/HigA system regulates multiple metabolic pathways to balance the growth and stress response in P. aeruginosa and could guide further development of anti-TA oriented strategies for pathogen treatment.


Asunto(s)
Antitoxinas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas Bacterianas/genética , Motivos de Nucleótidos , Pseudomonas aeruginosa/genética
7.
J Dairy Sci ; 104(3): 2654-2667, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33455764

RESUMEN

The objective of this study was to develop a dynamic model for predicting the growth of Listeria monocytogenes in pasteurized cow milk under fluctuating temperature conditions during storage and temperature abuse. Six dynamic temperature profiles that simulated random fluctuation patterns were designed to change arbitrarily between 4 and 30°C. The growth data collected from 3 independent temperature profiles were used to determine the kinetic parameters and construct a growth model combining the primary and secondary models using a 1-step dynamic analysis method. The results showed that the estimated minimum growth temperature and maximum cell concentration were 0.6 ± 0.2°C and 7.8 ± 0.1 log cfu/mL (mean ± standard error), with the root mean square error (RMSE) only 0.3 log cfu/mL for model development. The model and the associated kinetic parameters were validated using the data collected under both dynamic and isothermal conditions, which were not used for model development, to verify the accuracy of prediction. The RMSE of prediction was approximately 0.3 log cfu/mL for fluctuating temperature profiles, and it was between 0.2 and 1.1 log cfu/mL under certain isothermal temperatures (2-30°C). The resulting model and kinetic parameters were further validated using 3 growth curves at 4, 7, and 10°C arbitrarily selected from ComBase (www.combase.cc). The RMSE of prediction was 0.8, 0.4, and 0.5 log cfu/mL, respectively, for these curves. The validation results indicated the predictive model was reasonably accurate, with relatively small RMSE. The model was then used to simulate the growth of L. monocytogenes under a variety of continuous and square-wave temperature profiles to demonstrate its potential application. The results of this study showed that the model developed in this study can be used to predict the growth of L. monocytogenes in contaminated milk during storage.


Asunto(s)
Listeria monocytogenes , Animales , Recuento de Colonia Microbiana/veterinaria , Microbiología de Alimentos , Cinética , Leche , Modelos Biológicos , Temperatura
8.
Food Microbiol ; 85: 103285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31500704

RESUMEN

The objective of this study was to determine the kinetic parameters and apply Markov Chain Monte Carlo (MCMC) simulation to predict the growth of Clostridium perfringens from spores in cooked ground chicken meat during dynamic cooling. Inoculated samples were exposed to various cooling conditions to observe dynamic growth. A combination of 4 cooling profiles was used in one-step inverse analysis with the Baranyi model as the primary model and the cardinal parameters model as the secondary model. Six kinetic parameters of the Baranyi model and the cardinal parameters model, including Q0, Ymax, µopt, Tmin, Topt, and Tmax, were estimated. The estimated Tmin, Topt, and Tmax were 14.8, 42.9, and 50.5 °C, respectively, with a µopt of 5.25 h-1 and maximum cell density of 8.4 log CFU/g. Correlation analysis showed that both Q0 and Ymax are weakly correlated to other parameters, while the remaining parameters are mostly mildly to strongly correlated with each other. Although it may be difficult to estimate highly correlated parameters using a single temperature profile, one-step analysis with multiple different temperature profiles helped estimate them successfully. The estimated parameters were used as the prior information to construct the posterior distribution for Bayesian analysis. MCMC simulation was used to predict the bacterial growth using different dynamic temperature profiles for validation of the accuracy of the predictive models. The MCMC simulation results showed that the Bayesian analysis produced more accurate predictions of bacterial growth during cooling than the deterministic method. With Bayesian analysis, the root-mean-square-error (RMSE) of prediction was only 0.1 log CFU/g with all residual errors within ±0.25 log CFU/g. Therefore, Bayesian analysis is recommended for predicting the growth of C. perfringens in cooked meat during cooling.


Asunto(s)
Clostridium perfringens/crecimiento & desarrollo , Culinaria , Manipulación de Alimentos , Productos de la Carne/microbiología , Temperatura , Animales , Teorema de Bayes , Pollos , Recuento de Colonia Microbiana , Simulación por Computador , Cinética , Cadenas de Markov , Modelos Biológicos , Método de Montecarlo , Esporas Bacterianas/crecimiento & desarrollo
9.
J Dairy Sci ; 103(11): 9958-9968, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32981731

RESUMEN

Staphylococcus aureus is a common foodborne pathogen that is ubiquitous in nature. Consumption of contaminated foods, such as dairy products, can lead to food poisoning caused by heat-stable staphylococcal toxins that are not easily destroyed during pasteurization. The objective of this study was to investigate the growth kinetics of S. aureus and background microorganisms in camel milk stored at different temperatures between 8 and 43°C using one-step kinetic analysis to estimate the kinetic parameters from the observed growth curves. The growth of S. aureus showed apparent lag, exponential, and stationary phases, whereas no or negligible lag phase was observed for background microorganisms. Data analysis showed that the estimated minimum, optimum, and maximum growth temperatures were 5.9, 42.0, and 49.2°C for S. aureus, and 3.0, 38.6, and 49.2°C for the background microorganisms, respectively. The estimated optimum specific growth rate was higher for S. aureus (1.24 h-1) than for background microorganisms (0.995 h-1). This study found that camel milk may inhibit the growth of S. aureus, as it exhibits a lower specific growth rate than that in cow milk or cooked potato. It also has a longer lag phase than that in cow milk at comparable temperature ranges. This unique property is probably related to the presence of some antimicrobial compounds naturally occurring in camel milk. Validation of kinetic parameters and models showed that the root mean square error of prediction was only 0.5 log cfu/mL for S. aureus and background microorganisms, suggesting that the models are reasonably accurate. These models can be used for conducting risk assessments of S. aureus and predicting the general microbiological shelf life of camel milk to prevent foodborne staphylococcal poisoning.


Asunto(s)
Antiinfecciosos/farmacología , Microbiología de Alimentos , Leche/microbiología , Intoxicación Alimentaria Estafilocócica/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Camelus , Femenino , Calor , Humanos , Cinética , Pasteurización , Medición de Riesgo , Intoxicación Alimentaria Estafilocócica/prevención & control , Staphylococcus aureus/efectos de los fármacos , Temperatura
10.
Foodborne Pathog Dis ; 17(5): 296-307, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31800332

RESUMEN

Foodborne Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is increasingly threatening human health. Pooled prevalence rates of S. aureus contamination have been extensively studied in retail food products in mainland China, but data regarding antibiotic resistance rates of S. aureus remain scattered. This study was designed to collect researches published between 2007 and 2017 in mainland China and to evaluate the antibiotic resistance of S. aureus from retail foods using a meta-analytic approach. We systematically searched the China National Knowledge Infrastructure (CNKI) and Web of Science databases to identify peer-reviewed literature. A number of multilevel random-effects models were fitted to estimate mean occurrence rates of antibiotic-resistant S. aureus, and subgroup analyses were performed to compare antibiotic resistance rates of S. aureus throughout the years and among the methods to determine the antimicrobial susceptibility. Among the considered antibiotics, S. aureus showed the highest resistance rate to penicillin G (87%, 95% confidence interval [CI] 83-90%), followed by ampicillin (72%, 95% CI 62-81%) and erythromycin (41%, 95% CI 36-46%). MRSA showed the highest resistance rate to ampicillin (98%, 95% CI 89-100%), followed by oxacillin (97%, 95% CI 80-100%) and penicillin G (96%, 95% CI 89-99%). Multidrug resistance (MDR) of S. aureus was most frequently observed to three antibiotics (17%, 95% CI 12-22%), and MRSA showed the highest resistance rate to four antibiotics (24%, 95% CI 5-67%). Subgroup analyses results proved that sources of heterogeneity among studies were neither publication year nor detection method. In conclusion, the meta-analysis showed that ß-lactam antibiotics resistance of S. aureus and MRSA strains isolated from retail foods remained the most serious, and MDR of S. aureus and MRSA were also observed. Therefore, it is important to monitor the antibiotic resistance of S. aureus and MRSA in food chain, and food safety measures should be taken to reduce the transmission of this bacterium from foods to human beings.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Contaminación de Alimentos , Microbiología de Alimentos , Staphylococcus aureus/efectos de los fármacos , China , Productos Lácteos/microbiología , Comida Rápida/microbiología , Carne/microbiología , Pruebas de Sensibilidad Microbiana , Prevalencia , Staphylococcus aureus/aislamiento & purificación , Verduras/microbiología
11.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30642898

RESUMEN

Biofilm formation is a critical determinant in the pathopoiesis of Pseudomonas aeruginosa It could significantly increase bacterial resistance to drugs and host defense. Thus, inhibition of biofilm matrix production could be regarded as a promising attempt to prevent colonization of P. aeruginosa and the subsequent infection. PpgL, a periplasmic gluconolactonase, has been reported to be involved in P. aeruginosa quorum-sensing (QS) system regulation. However, the detailed function and catalysis mechanism remain elusive. Here, the crystal structure of PpgL is described in the current study, along with biochemical analysis, revealing that PpgL is a typical ß-propeller enzyme with unique metal-independent lactone hydrolysis activity. Consequently, comparative analysis of seven-bladed propeller lactone-catalyzing enzymes and mutagenesis studies identify the critical sites which contribute to the diverse catalytic and substrate recognition functions. In addition, the reduced biofilm formation and attenuated invasion phenotype resulting from deletion of ppgL confirm the importance of PpgL in P. aeruginosa pathogenesis. These results suggest that PpgL is a potential target for developing new agents against the diseases caused by P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Lactonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Proteínas Bacterianas/genética , Biocatálisis , Biopelículas , Hidrolasas de Éster Carboxílico/genética , Células HeLa , Humanos , Lactonas/química , Metales/química , Metales/metabolismo , Periplasma/química , Periplasma/enzimología , Periplasma/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Especificidad por Sustrato , Virulencia
12.
Phytopathology ; 109(1): 111-119, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30040027

RESUMEN

Fusarium head blight (FHB) is a destructive disease of wheat that reduces yield and grain quality. High-throughput proteomic techniques have been used to identify a wide range of candidate proteins involved in host resistance. The majority of the published works on the proteomics of the wheat response to Fusarium graminearum infection are case specific. In the current study, a high-throughput quantitative label-free strategy was employed on bulked rachides of F. graminearum-infected wheat collected from multiple genotypes. Differentially accumulated proteins among the following four pools were identified: mock-inoculated FHB-resistant accessions (RM), mock-inoculated FHB-susceptible accessions (SM), F. graminearum-inoculated FHB-resistant accessions (RFg), and F. graminearum-inoculated FHB-susceptible accessions (SFg). Four pairs of comparisons were made: RFg versus RM, SFg versus SM, RM versus SM, and RFg versus SFg. Proteins were projected onto the consensus intervals of previously reported quantitative trait loci in the FHB-resistant pool by blasting against the Chinese Spring reference sequences. In addition to proteins previously reported in the host response to Fusarium spp., new candidates have emerged in association with resistance or susceptibility, including a group 3 late embryogenesis abundant as a resistance-related protein and a purple acid phosphatase as a susceptibility protein. The protein atlas presented here provides new perspectives on the interaction between F. graminearum and wheat.


Asunto(s)
Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Proteoma/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Genotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
13.
Biochem J ; 475(6): 1107-1119, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29382741

RESUMEN

In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2ß2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2ß2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.


Asunto(s)
Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Pseudomonas aeruginosa/enzimología , Regulación Alostérica/genética , Sitio Alostérico/genética , Secuencia de Aminoácidos , Aspartato Quinasa/genética , Catálisis , Modelos Moleculares , Organismos Modificados Genéticamente , Dominios y Motivos de Interacción de Proteínas/genética , Pseudomonas aeruginosa/genética , Alineación de Secuencia
14.
Chembiochem ; 19(14): 1471-1475, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29603535

RESUMEN

Unlike traditional recycling strategies, biodegradation is a sustainable solution for disposing of poly(ethylene terephthalate) (PET) waste. PETase, a newly identified enzyme from Ideonella sakaiensis, has high efficiency and specificity towards PET and is, thus, a prominent candidate for PET degradation. On the basis of biochemical analysis, we propose that a wide substrate-binding pocket is critical for its excellent ability to hydrolyze crystallized PET. Structure-guided site-directed mutagenesis revealed an improvement in PETase catalytic efficiency, providing valuable insight into how the molecular engineering of PETase can optimize its application in biocatalysis.

15.
BMC Vet Res ; 13(1): 344, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157237

RESUMEN

BACKGROUND: In order to better understand the possible role of fungi in giant panda reproduction and overall health, it is important to provide a baseline for the normal fungal composition in the reproductive system. Using morphology and internal transcribed spacer (ITS) sequence analysis, we systematically isolated and identified fungal species from the vagina, foreskin, and semen of 21 (11 males and 10 females) healthy giant pandas to understand the normal fungal flora of the genital tracts. RESULTS: A total of 76 fungal strains were obtained, representing 42 genera and 60 species. Among them 47 fungal strains were obtained from vaginal samples, 24 from foreskins, and 5 from semen samples. Several fungal strains were isolated from more than one sample. More fungal species were isolated from females from males. The predominant genera were Aspergillus, Trichosporon, and Penicillium, followed by Candida, Cladosporium, Sordariomycetes, and Diaporthe. The average number of strains in the female vagina was significantly higher than in the foreskin and semen of male. CONCLUSIONS: A total of 60 fungal species (belonging to 42 genera) were identified in the giant panda's genital tract. Some of the species were commonly shared in both males and females. These findings provide novel information on the fungal community in the reproductive tracts of giant pandas.


Asunto(s)
Prepucio/microbiología , Micobioma , Semen/microbiología , Ursidae/microbiología , Vagina/microbiología , Animales , Aspergillus/aislamiento & purificación , Candida/aislamiento & purificación , Femenino , Masculino , Micobioma/genética , Penicillium/aislamiento & purificación , Filogenia , Trichosporon/aislamiento & purificación
17.
Theor Appl Genet ; 129(11): 2075-2084, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27460590

RESUMEN

KEY MESSAGE: Using bulk segregant analysis (BSA) coupling with RNA-seq and DNA markers identified a potentially novel nitrogen-dependent lesion mimic gene Ndhrl1 on 2BS in wheat. Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) traits that appear on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-responsive and N dosage dependent. Using BSA strategy together with RNA-seq and DNA markers, we identified an N-dependent LM gene (Ndhrl1) and mapped it to the short arm of chromosome 2B using an F5 recombinant inbred population developed from the cross of P7001 × P216. The putative gene was delimited into an interval of 8.1 cM flanked by the CAPS/dCAPS markers 7hrC9 and 7hr2dc14, and co-segregated with the dCAPS marker 7hrdc2. This gene is most likely a novel gene for LM in wheat based on its chromosomal location. Further analysis of RNA-seq data showed that plant-pathogen interaction, nitrogen metabolism, zeatin biosynthesis and plant hormone signal transduction pathways were significantly differentially expressed between LM and non-LM lines.


Asunto(s)
Genes Dominantes , Genes de Plantas , Nitrógeno/fisiología , Triticum/genética , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Fenotipo , ARN de Planta/genética , Análisis de Secuencia de ARN , Triticum/fisiología
18.
PLoS Genet ; 8(5): e1002708, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615579

RESUMEN

Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA-mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation "promoter" but not an "inhibitor" in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos , Osteogénesis , Animales , Calcificación Fisiológica/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Línea Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/anomalías , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Odontoblastos/citología , Odontoblastos/metabolismo , Osteogénesis/genética
19.
Dent Traumatol ; 30(4): 285-95, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24502800

RESUMEN

AIM: To analyze the expression and distribution of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in reparative dentin (RepD). METHODOLOGY: Cavities on the mesial surfaces of rat molars were prepared to expose the pulp, and a calcium hydroxide agent was applied to cap the exposed pulp. The molars with pulp capping were extracted at postoperative 1, 2, and 4 weeks. The immunolocalization of four SIBLINGs, dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteopontin (OPN) in RepD, was analyzed in comparison with reactionary dentin (ReaD) and primary dentin (PD). RESULTS: At two weeks after operation, the region of the exposed pulp formed a layer of reparative dentin bridge sealing the communication between the cavity and pulp chamber. Dentinal tubules in RepD were more irregular in shape and fewer in number than PD. At postoperative 2 and 4 weeks, RepD had lower levels of DMP1 and DSP than PD. BSP and OPN were present in RepD, but not in PD. RepD showed certain similarities to ReaD in the expression of SIBLINGs. CONCLUSIONS: The reduced levels of DMP1 and DSP may be associated with the decreased number of dentinal tubules in RepD. The expression of BSP and OPN in RepD indicates that the odontoblast-like cells were attempting to produce a hard tissue at a very rapid pace. These findings suggest that in response to the surgical injury, the newly differentiated odontoblast-like cells altered their synthesis of the dentinogenesis-related proteins and produced a hard tissue that is an intermediate between dentin and bone.


Asunto(s)
Dentina/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Diente Molar/metabolismo , Animales , Inmunohistoquímica , Ligandos , Ratas , Ratas Wistar
20.
Foods ; 13(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275683

RESUMEN

Consumer acceptance of Keitt mangoes (Mangifera indica L.) is significantly affected by their slow postharvest ripening. This work used gaseous chlorine dioxide (ClO2(g)) to prepare the ready-to-eat Keitt mango and explored the potential mechanisms for the mango ripening. Harvested mangoes were treated with 20 mg·L-1 of ClO2(g) or ethephon for 3 h (25 °C) and left in a climatic chamber with a temperature of 25 ± 1 °C and a relative humidity of 85 ± 5% for 4 d. The results showed that ClO2(g) treatment significantly promoted the orange coloration of mango flesh compared to the untreated control group. Moreover, ClO2(g) treatment significantly elevated the total soluble solids, total soluble sugar, and total carotenoids content of mangoes, whereas the firmness and titratable acidity were reduced. ClO2(g)-treated mangoes reached the edible window on day 2, as did mangoes treated with ethephon at the same concentration, except that the sweetness was prominent. The residual ClO2 level of the mangoes was <0.3 mg/kg during the whole storage time, which is a safe level for fruit. In addition, ClO2(g) significantly advanced the onset of ethylene peaks by 0.5 days and increased its production between days 0.5 and 2 compared to the control group. Consistently, the genes involved in ethylene biosynthesis including miACS6, miACO1, and miACO were upregulated. In sum, ClO2(g) can be a potential technique to reduce the time for harvested mango to reach the edible window, and it functions in modulating postharvest ripening by inducing ethylene biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA