Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nonlinear Anal Real World Appl ; 69: 103738, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36042914

RESUMEN

Contagious pathogens, such as influenza and COVID-19, are known to be represented by multiple genetic strains. Different genetic strains may have different characteristics, such as spreading more easily, causing more severe diseases, or even evading the immune response of the host. These facts complicate our ability to combat these diseases. There are many ways to prevent the spread of infectious diseases, and vaccination is the most effective. Thus, studying the impact of vaccines on the dynamics of a multi-strain model is crucial. Moreover, the notion of complex networks is commonly used to describe the social contacts that should be of particular concern in epidemic dynamics. In this paper, we investigate a two-strain epidemic model using a single-strain vaccine in complex networks. We first derive two threshold quantities, R 1 and R 2 , for each strain. Then, by using the basic tools for stability analysis in dynamical systems (i.e., Lyapunov function method and LaSalle's invariance principle), we prove that if R 1 < 1 and R 2 < 1 , then the disease-free equilibrium is globally asymptotically stable in the two-strain model. This means that the disease will die out. Furthermore, the global stability of each strain dominance equilibrium is established by introducing further critical values. Under these stability conditions, we can determine which strain will survive. Particularly, we find that the two strains can coexist under certain condition; thus, a coexistence equilibrium exists. Moreover, as long as the equilibrium exists, it is globally stable. Numerical simulations are conducted to validate the theoretical results.

2.
Chaos ; 17(3): 033111, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17902993

RESUMEN

Based on the concept of matrix measures, we study global stability of synchronization in networks. Our results apply to quite general connectivity topology. In addition, a rigorous lower bound on the coupling strength for global synchronization of all oscillators is also obtained. Moreover, by merely checking the structure of the vector field of the single oscillator, we shall be able to determine if the system is globally synchronized.


Asunto(s)
Algoritmos , Relojes Biológicos/fisiología , Retroalimentación/fisiología , Modelos Biológicos , Dinámicas no Lineales , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA