Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Tissue Res ; 396(1): 1-18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416172

RESUMEN

Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.


Asunto(s)
Imagenología Tridimensional , Microtomía , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microtomía/métodos , Microscopía por Crioelectrón
2.
Insect Mol Biol ; 33(4): 350-361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38430546

RESUMEN

Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.


Asunto(s)
Hemípteros , Proteínas de Insectos , Animales , Hemípteros/genética , Hemípteros/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Interferencia de ARN , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Microscopía Electrónica de Rastreo
3.
Theor Appl Genet ; 137(7): 150, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847846

RESUMEN

Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Semillas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/enzimología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas , Clonación Molecular , Mapeo Cromosómico , Haplotipos , Pared Celular/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Genes de Plantas
4.
Arch Insect Biochem Physiol ; 115(3): e22096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38500448

RESUMEN

The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.


Asunto(s)
Cuerpo Adiposo , Hemípteros , Animales , Hemípteros/genética
5.
BMC Public Health ; 24(1): 707, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443853

RESUMEN

BACKGROUND: Ambient air pollutants have been suggested to affect pubertal development. Nevertheless, current studies indicate inconsistent effects of these pollutants, causing precocious or delayed puberty onset. This study aimed to explore the associations between long-term exposure to particulate matter with aerodynamic diameters ≤ 2.5 µm (PM2.5) along with its components and menarche timing among Chinese girls. METHOD: Self-reported age at menarche was collected among 855 girls from China Health and Nutrition Survey 2004 to 2015. The pre-menarche annual average concentrations of PM2.5 and its components were calculated on the basis of a long-term (2000-2014) high-resolution PM2.5 components dataset. Generalized linear models (GLM) and logistic regression models were used to analyze the associations of exposure to a single pollutant (PM2.5, sulfate, nitrate, ammonium, black carbon and organic matter) with age at menarche and early menarche (< 12 years), respectively. Weighted quantile sum methods were applied to examine the impacts of joint exposure on menarche timing. RESULTS: In the adjusted GLM, per 1 µg/m3 increase of annual average concentrations of nitrate and ammonium decreased age at menarche by 0.098 years and 0.127 years, respectively (all P < 0.05). Every 1 µg/m3 increase of annual average concentrations of PM2.5 (OR: 1.04, 95% CI: 1.00-1.08), sulfate (OR: 1.23, 95% CI: 1.01-1.50), nitrate (OR: 1.23, 95% CI: 1.06-1.43) and ammonium (OR: 1.32, 95% CI: 1.06-1.66) were significantly positively associated with early menarche. Higher level of joint exposure to PM2.5 and its components was associated with 11% higher odds of early menarche (P = 0.04). Additionally, the estimated weight of sulfate was the largest among the mixed pollutants. CONCLUSIONS: Long-term exposure to PM2.5 and its components could increase the risk of early menarche among Chinese girls. Moreover, sulfate might be the most critical components responsible for this relationship. Our study provides foundation for targeted prevention of PM2.5 components.


Asunto(s)
Compuestos de Amonio , Contaminantes Ambientales , Femenino , Humanos , Adolescente , Menarquia , Nitratos , China , Material Particulado/efectos adversos , Sulfatos
6.
Genomics ; 115(6): 110745, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37977332

RESUMEN

Grain qualities including milling quality, appearance quality, eating and cooking quality, and nutritional quality are important indicators in rice breeding. Significant achievements in genetic improvement of rice quality have been made. In this study, we analyzed the variation patterns of 16 traits in 1570 rice varieties and found significant improvements in appearance quality and eating and cooking quality, particularly in hybrid rice. Through genome-wide association study and allelic functional nucleotide polymorphisms analysis of quality trait genes, we found that ALK, FGR1, FLO7, GL7/GW7, GLW7, GS2, GS3, ONAC129, OsGRF8, POW1, WCR1, and Wx were associated with the genetic improvement of rice quality traits in Southern China. Allelic functional nucleotide polymorphisms analysis of 13 important rice quality genes, including fragrance gene fgr, were performed using the polymerase chain reaction amplification refractory mutation system technology. The results showed that Gui516, Gui569, Gui721, Ryousi, Rsimiao, Rbasi, and Yuehui9802 possessed multiple superior alleles. This study elucidates the phenotypic changes and molecular basis of key quality traits of varieties in Southern China. The findings will provide guidance for genetic improvement of rice quality and the development of new varieties.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Nucleótidos
7.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125774

RESUMEN

Fragrance is a valuable trait in rice varieties, with its aroma significantly influencing consumer preference. In this study, we conducted comprehensive metabolome and transcriptome analyses to elucidate the genetic and biochemical basis of fragrance in the Shangsixiangnuo (SSXN) variety, a fragrant indica rice cultivated in Guangxi, China. Through sensory evaluation and genetic analysis, we confirmed SSXN as strongly fragrant, with an 806 bp deletion in the BADH2 gene associated with fragrance production. In the metabolome analysis, a total of 238, 233, 105 and 60 metabolic compounds exhibited significant changes at the seedling (S), reproductive (R), filling (F), and maturation (M) stages, respectively. We identified four compounds that exhibited significant changes in SSXN across all four development stages. Our analyses revealed a significant upregulation of 2-acetyl-1-pyrroline (2AP), the well-studied aromatic compound, in SSXN compared to the non-fragrant variety. Additionally, correlation analysis identified several metabolites strongly associated with 2AP, including ethanone, 1-(1H-pyrrol-2-yl)-, 1H-pyrrole, and pyrrole. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) analysis highlighted the magenta and yellow modules as particularly enriched in aroma-related metabolites, providing insights into the complex aromatic compounds underlying the fragrance of rice. In the transcriptome analysis, a total of 5582, 5506, 4965, and 4599 differential expressed genes (DEGs) were identified across the four developmental stages, with a notable enrichment of the common pathway amino sugar and nucleotide sugar metabolism in all stages. In our correlation analysis between metabolome and transcriptome data, the top three connected metabolites, phenol-, 3-amino-, and 2AP, along with ethanone, 1-(1H-pyrrol-2-yl)-, exhibited strong associations with transcripts, highlighting their potential roles in fragrance biosynthesis. Additionally, the downregulated expression of the P4H4 gene, encoding a procollagen-proline dioxygenase that specifically targets proline, in SSXN suggests its involvement in proline metabolism and potentially in aroma formation pathways. Overall, our study provides comprehensive insights into the genetic and biochemical mechanisms underlying fragrance production in rice, laying the foundation for further research aimed at enhancing fragrance quality in rice breeding programs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Oryza , Pirroles , Transcriptoma , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Pirroles/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Odorantes/análisis
8.
Biochem Biophys Res Commun ; 675: 162-169, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37478772

RESUMEN

The Ubiquitin (Ub)-like molecules is essential for animal development and the physiopathology of multiple tissues in the vertebrate. Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified UBL, which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. However, there are no studies on UFMylation and the effect of UFMylation on BmNPV replication in silkworm. In this study, we identified BmUFM1 in the B. mori genome. Spatio-Temporal expression profiles showed that BmUFM1 expression was highly in hemocytes and response to various pathogenic stimuli. Furthermore, BmUFM1 is involved in the regulation of ER stress induced Unfolded Protein Response (UPR) and knockdown of BmUFM1 inhibited BmNPV replication. Overall, these results suggest that BmUFM1 plays an important role in facilitating BmNPV proliferation in silkworm. Our findings advance the understanding of UFM1's conjugation machinery, and also provides a potentially molecular target for BmNPV prevention and silkworm breeding.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/metabolismo , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Ubiquitinas/metabolismo
9.
Plant Biotechnol J ; 21(5): 1044-1057, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705337

RESUMEN

Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.


Asunto(s)
Oryza , Oryza/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Grano Comestible
10.
BMC Endocr Disord ; 23(1): 107, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173679

RESUMEN

BACKGROUND: Giant prolactinoma (> 4 cm in dimension) is a rare disorder. Invasive macroprolactinoma has the potential to cause base of skull erosion and extend into the nasal cavity or even the sphenoid sinus. Nasal bleeding caused by intranasal tumor extension is a rare complication associated with invasive giant prolactinoma. We report a case of giant invasive macroprolactinoma with repeated nasal bleeding as the initial symptom. CASE PRESENTATION: A 24-year-old man with an invasive giant prolactinoma in the nasal cavity and sellar region who presented with nasal bleeding as the initial symptom, misdiagnosed as olfactory neuroblastoma. However, markedly elevated serum prolactin levels (4700 ng/mL), and a 7.8-cm invasive sellar mass confirmed the diagnosis of invasive giant prolactinoma. He was treated with oral bromocriptine. Serum prolactin was reduced to near normal after 6 months of treatment. Follow-up magnetic resonance imaging showed that the sellar lesion had disappeared completely and the skull base lesions were reduced. CONCLUSION: This case is notable in demonstrating the aggressive nature of untreated invasive giant prolactinomas which can cause a diagnostic difficulty with potential serious consequences. Early detection of hormonal levels can avoid unnecessary nasal biopsy. Early identification of pituitary adenoma with nasal bleeding as the first symptom is particularly important.


Asunto(s)
Neoplasias Hipofisarias , Prolactinoma , Masculino , Humanos , Adulto Joven , Adulto , Prolactinoma/diagnóstico , Prolactinoma/diagnóstico por imagen , Epistaxis/complicaciones , Epistaxis/tratamiento farmacológico , Prolactina , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/diagnóstico por imagen , Bromocriptina/uso terapéutico , Imagen por Resonancia Magnética
11.
Curr Genomics ; 23(6): 400-411, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37920557

RESUMEN

Background: The white-backed planthopper (WBPH), Sogatella furcifera, causes great damage to many crops (mainly rice) by direct feeding or transmitting plant viruses. The previous genome assembly was generated by second-generation sequencing technologies, with a contig N50 of only 51.5 kb, and contained a lot of heterozygous sequences. Methods: We utilized third-generation sequencing technologies and Hi-C data to generate a high-quality chromosome-level assembly. We also provide a large amount of transcriptome data for full-length transcriptome analysis and gender differential expression analysis. Results: The final assembly comprised 56.38 Mb, with a contig N50 of 2.20 Mb and a scaffold N50 of 45.25 Mb. Fourteen autosomes and one X chromosome were identified. More than 99.5% of the assembled bases located on the 15 chromosomes. 95.9% of the complete BUSCO Hemiptera genes were detected in the final assembly and 16,880 genes were annotated. 722 genes were relatively highly expressed in males, while 60 in the females. Conclusion: The integrated genome, definite sex chromosomes, comprehensive transcriptome profiles, high efficiency of RNA interference and short life cycle substantially made WBPH an efficient research object for functional genomics.

12.
Endocr J ; 70(6): 581-589, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37019667

RESUMEN

Adipocyte apoptosis is a key initial event that contributes to macrophage infiltration into adipose tissue (AT) and thus triggers AT inflammation in obesity. MicroRNA-27a (miR-27a) was shown to mediate the pathological processes of many metabolic disorders; however, whether miR-27a is involved in adipocyte apoptosis of obese AT remains unknown. The present study aimed to investigate the alteration of miR-27a in obese individuals and its antiapoptotic function in adipocytes. In vivo, serum samples and omental adipose tissue from humans as well as epididymal fat pads from mice were collected to detect miR-27a expression. In vitro, 3T3-L1 preadipocytes and mature adipocytes were treated with TNF-α to induce apoptosis and transfected with a mimic for overexpressing miR-27a-3p. The results showed that miR-27a was markedly decreased in the serum and AT of obese human patients and in the AT of high-fat diet-fed mice. Regression analyses revealed that the serum level of miR-27a was correlated with metabolic parameters in human obesity. Notably, TNF-α induced cell apoptosis in both preadipocytes and mature adipocytes, as evidenced by the upregulation of cleaved caspase 3 and cleaved caspase 8 and the ratio of Bax to Bcl-2, while these effects were partly diminished by miR-27a overexpression. In addition, TUNEL and Hoechst 33258 staining verified that miR-27a overexpression markedly inhibited the apoptosis of adipocytes under TNF-α stimulation. Thus, miR-27a was downregulated in the AT of obese subjects with proapoptotic status, and overexpression of miR-27a exerted an antiapoptotic effect on preadipocytes, providing a novel potential target for preventing AT dysfunction.


Asunto(s)
MicroARNs , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , MicroARNs/genética , Adipocitos/metabolismo , Obesidad
13.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203556

RESUMEN

The brown planthopper Nilaparvata lugens (Stål) (BPH) is a main rice pest in China and many other Asian countries. In the control of BPH, the application of insect-resistant rice has proven to be quite effective. Secondary metabolites are essential weapons in plants' defense against phytophagous insects. Studies have found that differences in the content of secondary metabolites play a crucial role in determining whether rice exhibits resistance or susceptibility to BPH. Simultaneously, symbionts are essential to the BPH. Nevertheless, there is limited research on the impact of secondary metabolites on the symbionts within BPH. Therefore, investigating the influence of secondary metabolites on both BPH and their symbionts is significant for the control of BPH. In this experiment, newly emerged female adults of BPH were fed artificial diets containing 10 different secondary metabolites. The results indicated that methyl jasmonate had inhibitory effects on the survival rate, weight gain, and reproductive capacity of BPH. Using qPCR methods, it was discovered that the number of symbiotic fungi (Ascomycetes symbionts) within BPH significantly decreased under methyl jasmonate stress. In conclusion, this experiment has preliminarily revealed the inhibitory effects of methyl jasmonate on BPH and its symbionts, demonstrating its potential for controlling BPH.


Asunto(s)
Acetatos , Insectos , Oryza , China , Ciclopentanos , Insectos/microbiología , Oryza/química , Oxilipinas , Animales
14.
Plant J ; 107(1): 198-214, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884679

RESUMEN

Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.


Asunto(s)
Antocianinas/biosíntesis , Oryza/genética , Proteínas de Plantas/genética , Antocianinas/genética , Regulación de la Expresión Génica de las Plantas , Haplotipos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Selección Genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Repeticiones WD40
15.
Cancer Control ; 29: 10732748221076805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35209734

RESUMEN

OBJECTIVE: To investigate the relationship between the neutrophil-to-lymphocyte ratio (NLR) of patients with non-small cell lung cancer (NSCLC) and their risk of developing brain metastases after adjusting for confounding factors. METHODS: A retrospective observational study of the general data of patients with NSCLC diagnosed from January 2016 to December 2020. Multivariate logistic regression was used to calculate the dominance ratio (OR) with 95% confidence interval (CI) for NLR and NSCLC brain metastases with subgroup analysis. Generalized summation models and smoothed curve fitting were used to identify whether there was a nonlinear relationship between them. RESULTS: In all 3 models, NLR levels were positively correlated with NSCLC brain metastasis (model 1: OR: 1.12, 95% CI: 1.01-1.23, P = .025; model 2: OR: 1.16, 95% CI: 1.04-1.29, P = .007; model 3: OR: 1.20, 95% CI: 1.05-1.37, P = .006). Stratified analysis showed that this positive correlation was present in patients with adenocarcinoma (LUAD) and female patients (LUAD: OR: 1.30, 95% CI: 1.10-1.54, P = .002; female: OR: 1.52, 95% CI: 1.05-2.20, P = .026), while there was no significant correlation in patients with squamous carcinoma (LUSC) and male patients (LUSC: OR:0.76,95% CI:0.38- 1.53, P = .443; male: OR:1.13, 95% CI:0.95-1.33, P = .159). CONCLUSION: This study showed that elevated levels of NLR were independently associated with an increased risk of developing brain metastases in patients with NSCLC, and that this correlation varied by TYPE and SEX, with a significant correlation in female patients and patients with LUAD.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Encefálicas/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Linfocitos/patología , Masculino , Neutrófilos/patología , Pronóstico , Estudios Retrospectivos
16.
Cancer Control ; 29: 10732748221092926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35417660

RESUMEN

OBJECTIVE: To develop and validate a generalized prediction model that can classify epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer patients. METHODS: A total of 346 patients (296 in the training cohort and 50 in the validation cohort) from four centers were included in this retrospective study. First, 1085 features were extracted using IBEX from the computed tomography images. The features were screened using the intraclass correlation coefficient, hypothesis tests and least absolute shrinkage and selection operator. Logistic regression (LR), decision tree (DT), random forest (RF), and support vector machine (SVM) were used to build a radiomics model for classification. The models were evaluated using the following metrics: area under the curve (AUC), calibration curve (CAL), decision curve analysis (DCA), concordance index (C-index), and Brier score. RESULTS: Sixteen features were selected, and models were built using LR, DT, RF, and SVM. In the training cohort, the AUCs was .723, .842, .995, and .883; In the validation cohort, the AUCs were .658, 0567, .88, and .765. RF model with the best AUC, its CAL, C-index (training cohort=.998; validation cohort=.883), and Brier score (training cohort=.007; validation cohort=0.137) showed a satisfactory predictive accuracy; DCA indicated that the RF model has better clinical application value. CONCLUSION: Machine learning models based on computed tomography images can be used to evaluate EGFR status in patients with non-small cell lung cancer, and the RF model outperformed LR, DT, and SVM.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Aprendizaje Automático , Mutación , Estudios Retrospectivos
17.
Mol Biol Rep ; 49(9): 8337-8347, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690960

RESUMEN

BACKGROUND: The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS: The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION: Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.


Asunto(s)
Terapia de Inmunosupresión , Indolamina-Pirrol 2,3,-Dioxigenasa , Interferón gamma , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Receptor Toll-Like 3 , Animales , Proliferación Celular , Células Cultivadas , Perros , Terapia de Inmunosupresión/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Ratones , ARN Mensajero/metabolismo , Receptor Toll-Like 3/metabolismo
18.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35270018

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is an essential enzyme that transfers electrons from NADPH to cytochrome P450 monooxygenases. CPR is involved in cuticular hydrocarbon (CHC) synthesis in insects and is vital for insect development and survival. Here, we clarify the physiological function of a CPR gene in Nilaparvata lugens, an important rice pest, by using RNA interference. CPR gene knockdown leads to the functional loss of waterproofing and water retention in the integument of female adults, which causes significantly reduced body weight and a lethal phenotype. Scanning electron microscopy shows that the lipid layer on the outermost surface of the abdominal cuticle becomes thin in dsCPR-injected adults. Furthermore, CHC profile analysis reveals that CPR knockdown significantly decreases the contents of CHCs with a carbon chain length ≥ C27 in adult females. Moreover, we find that CPR knockdown generates a deficient phenotype in ovaries with deformed oocytes and a complete failure of egg-laying. These findings suggest that CPR plays multiple functional roles in CHC biosynthesis and embryo development in insects.


Asunto(s)
Hemípteros , Animales , Femenino , Hemípteros/genética , Hemípteros/fisiología , Insectos/genética , Integumento Común , NADP , Ovario
19.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299353

RESUMEN

Insect cuticular hydrocarbons (CHCs) are organic compounds of the surface lipid layer, which function as a barrier against water loss and xenobiotic penetration, while also serving as chemical signals. Plasticity of CHC profiles can vary depending upon numerous biological and environmental factors. Here, we investigated potential sources of variation in CHC profiles of Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, which are considered to be the most important rice pests in Asia. CHC profiles were quantified by GC/MS, and factors associated with variations were explored by conducting principal component analysis (PCA). Transcriptomes were further compared under different environmental conditions. The results demonstrated that CHC profiles differ among three species and change with different developmental stages, sexes, temperature, humidity and host plants. Genes involved in cuticular lipid biosynthesis pathways are modulated, which might explain why CHC profiles vary among species under different environments. Our study illustrates some biological and ecological variations in modifying CHC profiles, and the underlying molecular regulation mechanisms of the planthoppers in coping with changes of environmental conditions, which is of great importance for identifying potential vulnerabilities relating to pest ecology and developing novel pest management strategies.


Asunto(s)
Hidrocarburos/metabolismo , Insectos/metabolismo , Oryza/parasitología , Animales , Asia , Humedad , Insectos/fisiología , Análisis de Componente Principal/métodos , Temperatura , Transcriptoma/fisiología
20.
BMC Plant Biol ; 20(1): 193, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375632

RESUMEN

BACKGROUND: Nitrogen (N) is a major nutrient element for crop growth. In plants, the members of the peptide transporter (PTR) gene family may involve in nitrate uptake and transport. Here, we identified PTR gene family in rice and analyzed their expression profile in near-isogenic lines. RESULTS: We identified 96, 85 and 78 PTR genes in Nipponbare, R498 and Oryza glaberrima, and the phylogenetic trees were similar in Asian cultivated rice and African cultivated rice. The number of PTR genes was higher in peanut (125) and soybean (127). The 521 PTR genes in rice, maize, sorghum, peanut, soybean and Arabidopsis could be classified into 4 groups, and their distribution was different between monocots and dicots. In Nipponbare genome, the 25 PTR genes were distributed in 5 segmental duplication regions on chromosome 1, 2, 3, 4, 5, 7, 8, 9, and 10. The PTR genes in rice have 0-11 introns and 1-12 exons, and 16 of them have the NPF (NRT1/PTR family) domain. The results of RNA-seq showed that the number of differentially expressed genes (DEGs) between NIL15 and NIL19 at three stages were 928, 1467, and 1586, respectively. Under low N conditions, the number of differentially expressed PTR genes increased significantly. The RNA-seq data was analyzed using WGCNA to predict the potential interaction between genes. We classified the genes with similar expression pattern into one module, and obtained 25 target modules. Among these modules, three modules may be involved in rice N uptake and utilization, especially the brown module, in which hub genes were annotated as protein kinase that may regulate rice N metabolism. CONCLUSIONS: In this study, we comprehensively analyzed the PTR gene family in rice. 96 PTR genes were identified in Nippobare genome and 25 of them were located on five large segmental duplication regions. The Ka/Ks ratio indicated that many PTR genes had undergone positive selection. The RNA-seq results showed that many PTR genes were involved in rice nitrogen use efficiency (NUE), and protein kinases might play an important role in this process. These results provide a fundamental basis to improve the rice NUE via molecular breeding.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Duplicación de Gen , Redes Reguladoras de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA